
Abstract
This paper describes a system for co-registration of time series
satellite images which uses a learning-based strategy. During a
training phase, the system learns to recognize regions in an
image suited for registration. It also learns the relationship
between image characteristics and registration performance for
a set of different registration algorithms. This enables intelli-
gent selection of an appropriate registration algorithm for each
region in the image, while regions unsuited for registration can
be discarded. The approach is intended for co-registration of
sequences of images acquired from identical or similar earth
observation sensors. It has been tested for such sequences
from different types of sensors, both optical and radar, with
varying resolution. For images with moderate differences in
content, the registration accuracy is, in general, good with an
RMS error of one pixel or less.

Introduction
The study of time series of satellite images is an important
task in many remote sensing applications, for instance for
observing different environmental phenomena. In such
applications, a model-based georeferencing is first performed
based on satellite parameters. Then a co-registration of the
images in the time series is used to improve the alignment
of the images and refine the accuracy. A combination of
manual and automatic registration techniques is typically
used for this co-registration, but fully automatic techniques
do exist.

The image registration process tries to determine the
most accurate match between the images, and automatic
techniques typically combine similarity metrics and match-
ing strategies to achieve this. There exists a range of differ-
ent algorithms, and selection of the appropriate combination
depends on the application and the image specifics. Hence,
a single registration technique will generally not be suffi-
cient when handling a range of images. For a user that
needs to work on different types of time series, it would
therefore be useful to have a more general tool for image
registration. In this paper, we present a novel registration
approach, which aims at offering the user such a tool. The
idea is to have a system with a library of different registra-
tion algorithms, and to provide a tool on top of this which
makes the system able to intelligently choose, at run-time,
an appropriate algorithm based on image characteristics.

Others have presented systems for image registration
that offer the user a selection of different methods to choose
from. Fedorov et al. (2002) have designed a system consist-
ing of three different algorithms for control point extraction
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which can easily be extended to include more methods.
Le Moigne et al. (2004) present a modular image registration
framework, offering a selection of algorithms. A registration
algorithm is here defined as a combination of features,
similarity measure, and matching strategy, where a user may
choose components suitable for the problem at hand. Hence,
the user is responsible for selecting the right combination,
and this combination will be used for the entire image. This
requires that there exists an algorithm that will work for the
entire image. The user also needs to know the algorithms
well, and be able to select the algorithm that is best suited
for each problem. Alternatively, the user can test and
compare several algorithms.

Approaches, where the system itself is able to automati-
cally select the best registration algorithm for a problem, have
been mentioned as potentially useful, for instance by Rignot
et al. (1991) and Fonseca and Costa (1997). However, no one
has presented methods for automatic selection of the best
algorithm, and systems incorporating such solutions have yet
to appear.

In the approach that we propose, automatic selection of
the best algorithms is achieved by using supervised learning,
where the system learns the correspondence between image
characteristics and algorithm performance. In addition, we
use a region-based strategy to make the approach locally
adaptive. This allows for use of different registration algo-
rithms for different regions and permits regions not suited for
registration to be discarded. The approach is an extension of
a method introduced in a previous workshop paper (Eikvil
et al., 2005).

Methods
The approach that we suggest works as follows. In a training
phase, the system learns the correspondence between image
features and performance for a set of registration algorithms.
At run-time, this enables the system to predict the perform-
ance for each algorithm from the image features. By applying
this strategy to image regions rather than the whole image,
the approach is made locally adaptive. Features are extracted
from regions, and the performance of the available algorithms
is predicted for each region. For this prediction, we have
chosen to use a neural net. Based on the performance
prediction, regions and algorithms are selected. For each
selected region, a local registration can then be performed
with the appropriate algorithm, and from the resulting set of



1298 Novembe r  2009 PHOTOGRAMMETRIC ENGINEER ING & REMOTE SENS ING

Figure 1. The first few steps of the registration approach consist of feature
extraction, performance prediction, and region and algorithm selection, which
results in an image where some regions are discarded (marked as black
cells), while different registration algorithms may be selected for each of the
remaining regions (illustrated as cells marked 1, 2, 3).This is followed by a
local co-registration of image regions, removal of potential erroneous region
transforms and a final estimation of a global transform.

local transforms, a smooth global transform can be estimated.
Figure 1 illustrates the steps involved in our approach.
The details of each step will be treated in forthcoming sub-
sections.

Region-based Strategy
We propose to use an approach where the registration algo-
rithm is selected automatically based on image characteristics.
In addition, as the characteristics of a remote sensing image
may vary across the scene, it can be useful to permit the use
of different algorithms for different regions. At the same time,
it could be desirable to be able to identify and discard regions
that are not suited for registration. Hence, we have chosen to
use a region-based strategy in our approach. As corresponding
regions from the images to be registered need to be compara-
ble in shape and size, we have chosen a simple and robust
strategy where the images are simply divided into smaller
rectangular sub-images of equal size. Some discussion on the
selection of region size can be found in the Examining the
Effect of Region Size subsection.

In the rest of this paper we will, when considering pairs
of images to be co-registered, use the notation fixed image and
moving image, where the fixed image is the image defining
the coordinate system, while the moving image is the one to
be transformed to this coordinate system.

Feature Extraction
We want to extract features from the image regions that
convey image characteristics that are important for image
registration. Below we discuss what would be important
image characteristics in this context.

• Regions containing characteristic patterns or details will
often provide more accurate matches. Hence, the features
should say something about the information content of the
image, e.g., whether the image is dominated by homogeneous
or textured areas. For this purpose, texture and gradient
features may be suitable.

• Information on whether there is a correspondence between
the fixed and the moving image(s) will be important. Regions
where there is no correspondence, or where the images have
very different contents, should be discarded. For earth
observation images, such situations can for instance be
caused by clouds. Features based on differences between the
fixed and moving image, may be useful to reveal these cases.

• Finally, the actual relationship between the image regions
can also provide useful information. Many correlation-based
methods for matching will, for instance, perform best when
there is a linear relationship between the intensity of the
images. Again, features conveying information about the
relationship between images may be derived from differences
between the images.

Based on the considerations above, we selected a set of
features based on texture, image statistics and image differ-
ences. More details on these features will be given in the
next section.

Features
To extract information about the content and characteristic
details of the images we chose to use the following three
types of features:

• Texture features that are computed from the Grey Level 
Co-occurrence Matrix (GLCM). These features were originally
introduced by Haralick et al. (1973). They are based on
second-order statistics, and are computed by finding
repeated occurrences of grey-level configurations. The
following texture features were used: mean, variance,
homogeneity, contrast, dissimilarity, entropy, ASM, and
correlation. The features were extracted from windows
corresponding to the image regions.

• Registrability (RIG). This is a measure introduced by
Chalermwat (1999) which is intended to represent a
region’s ability to provide unambiguous registration by
measuring sensitivity to transformations. Regions that are
sensitive to transformations are expected to be better suited
for registration than regions that are not.
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• Gradient magnitude computed by the Sobel operator is
included. 

To extract information about correspondence and relation-
ship between the images, we use a set of features based on
differences between image characteristics. These are computed
as differences between the features computed from the fixed
image and the moving image:

• Differences in texture, registrability, and gradient magnitude:
These are computed from the feature values derived with the
methods described above.

• Differences in statistical features. The differences in values
for a set of four normalized statistical features are computed
for each pair of images (regions). These features are range,
mean, variance, and entropy.

• Differences in zone means: Each region is divided into a grid
of nine zones, where the mean within each zone is calculated.
The Euclidean distance and the variance of the differences
between the zone means of corresponding regions are used as
features. The features are normalized to reduce their depend-
ence on the grey scale level of the image.

A total of 26 features are extracted from each region. The
features are normalized such that the means and standard
deviations are zero and one, respectively.

Selection of Regions and Registration Algorithms
We need to establish a correspondence between extracted
features and performance of the registration algorithms. This
can be achieved in different ways:

• By establishing an a priori model for the correspondence
between image characteristics and the expected performance
of each algorithm.

• By using a training approach to determine the correspon-
dence between image characteristics and algorithm
performance.

In practice, these two are often combined. We have used
a priori knowledge to choose the features, and a supervised
training approach to establish the correspondence. The
latter problem is viewed as a regression problem, where
the objective is to use the extracted features to predict the
performance for each registration algorithm. For this regression
problem, we have used a feed-forward neural network, which
provides a flexible way to model complicated relations.

Training
Supervised learning is used in a separate training phase,
where the system is trained on a large number of examples
for which the distortion is known. These examples are
obtained by first performing a careful manual co-registration
of image pairs and then applying various known distortions
to one of the images. The subsequent training is then
performed by running all registration algorithms on all
examples, and computing the algorithm performance in
each case. Features based on image characteristics are also
extracted for all the examples. Afterwards, the system is
trained to learn the correspondence between image charac-
teristics and algorithm performance.

For learning, and later prediction, we have chosen to
use a neural network with one hidden layer. The number
of input nodes corresponds to the number of image fea-
tures, and the number of output nodes corresponds to the
number of registration algorithms. For the training of this
network, a measure of each algorithm’s performance needs
to be defined for the target values. We have decided to use
a performance measure based on the distance from the true
distortion. By using training examples for which the true
distortion was known, the performance was measured as
the Euclidean distance between the distortion estimated by
the registration algorithm and the true distortion.

In cases where a registration algorithm fails completely,
the distance from the true distortion may be somewhat
unpredictable. To reduce the variability in the target values,
we have therefore used a soft truncation of the distances.
Finally, as a distance equal zero corresponds to the best
performance, we have changed the sign of the target value to
get a performance measure that increases with increasing
registration accuracy.

Performance Prediction
The trained neural network will, during run-time, use
extracted image features to automatically predict the
performance for the set of available registration algorithms.
This is done for each region in the image, resulting in a
list of scores corresponding to the predicted performance
for each algorithm for that region. These scores can then
be used to select both the regions that are best suited for
registration and the registration algorithm to be applied to
each region.

Selecting Regions and Algorithms
The aim of the region selection is to rule out regions that may
decrease the quality of the registration and also to reduce the
computational load of the process. A low maximum score for
a region will indicate that it is not suited for registration.
Hence, regions are selected according to their maximum
score. In addition, care is taken to ensure a sufficient spatial
distribution of regions over the image. When the selection of
regions is finished, the algorithm to be used for each remain-
ing region is simply selected by picking the one with the
highest predicted performance.

Transform Estimation
In this process, the registration algorithm selected for each
pair of regions is used to estimate the transform needed to
co-register that pair. The result is a set of local transforms.
This set is analyzed to remove potential errors, and then the
remaining set of transforms is used to estimate the global
transform. The details of this process are described in the
next sections.

Registration of Regions
The registration of regions is performed using the algorithms
selected according to the performance prediction. The
algorithms are fetched from a library offering a selection of
registration algorithms with different characteristics.

Algorithm Library
Any library offering a variation of registration algorithms
could in practice be used. To find a suitable library, we have
reviewed and evaluated a range of existing tools offering
algorithms needed in the registration process. Based on this
evaluation, the ITK/Insight library (Ibanez et al., 2005) was
selected to provide the basic registration algorithms. This
is a C�� library, originally developed for use in medical
imaging, which contains, among other things, a selection of
similarity metrics and optimizers for image registration. Image
registration is seen as an optimization problem. The similarity
metrics are used to compare the fixed and the moving image
and provide the criteria for the optimizer, while the optimizer
searches through the space of transform parameters to find
the best match. In our case, the transform can be selected as
one of translation, rotation or affine transform.

The combination of metric and optimizer defines the
registration algorithm. From the library, we have selected a
set of metrics and optimizers, designed to handle different
situations. A subset of combinations of these algorithms
constitutes our set of registration algorithms. This will be
described in the next sections.
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TABLE 1. LIBRARY OF REGISTRATION ALGORITHMS

Algorithm Similarity metric Optimizer

M1 Mattes Mutual Information Regular Step Gradient Descent
M2 Normalized Correlation One Plus One Evolutionary
M3 Mean Squares Regular Step Gradient Descent
M4 Mattes Mutual Information One Plus One Evolutionary
M5 Normalized Correlation Regular Step Gradient Descent
M6 Viola-Wells Mutual Information Gradient Descent
M7 Viola-Wells Mutual Information One Plus One Evolutionary
M8 Normalized Viola-Wells Mutual Information One Plus One Evolutionary
M9 Mean Squares One Plus One Evolutionary
M10 Normalized Viola-Wells Mutual Information Regular Step Gradient Descent

Similarity Metrics
The similarity metrics are used to measure the correspon-
dence between images (or regions). Three metrics, with
different characteristics, were selected from the Insight
toolkit:

• Mean Squares: This metric computes the mean squared
pixel-wise difference in intensity between image A and B
over a region. It is simple to compute and has a relatively
large capture radius, but even linear changes in intensity can
result in a poor match.

• Normalized Correlation: This metric computes pixel-wise
cross-correlation and normalizes it by the square root of
the auto-correlation of the images. The metric is insensitive
to multiplicative factors between the images, but has a
relatively small capture radius. It is robust to white noise, but
sensitive to clutter, occlusion and nonlinear contrast changes.

• Mutual Information: Mutual information (MI) measures how
much information one random variable (image intensity in
one image) tells about another random variable (image
intensity in the other image). Hence, the actual form of
dependency does not have to be specified, and a complex
correspondence between image values can be modeled.
Three different variants of MI have been included: Mattes
MI (Mattes et al., 2001), Viola-Wells MI, and Normalized
Viola-Wells MI (Viola and Wells 1997).

Optimizers
The optimizer will optimize the similarity metric criterion
with respect to the transform parameters. Three optimizers
with different characteristics were selected from the
Insight toolkit:

• Gradient Descent: This optimizer advances parameters in
the direction of the gradient, the step size being governed by
a learning rate. The drawback of this optimizer is that
the steps depend on the values of the gradient. This can
however be an advantage for problems where the derivatives
are smooth and monotonic.

• One Plus One Evolutionary (Styner et al., 2000): This
optimizer follows a strategy that simulates the biological
evolution of a set of samples in the search space. It
generates random samples around the current position in
the parametric space. It can perform better than gradient
descent type optimizers when similarity metrics are noisy.

• Regular Step Gradient Descent: This optimizer advances
parameters in the direction of the gradient, computing the
step size with a bipartition scheme. The Regular Step Gradient
Descent will advance at a more stable rate than the other two
optimizers.

Registration Algorithms
A registration algorithm is defined as a combination of a
similarity metric and an optimizer. We selected a subset of
ten combinations from the set of metrics and optimizers
described above. This set was found to offer a sufficient
selection of algorithms with different characteristics. The set
of combinations is summarized in Table 1.

Rejection of Erroneous Local Transforms
At times, some of the local transform estimations may fail.
For a best possible result, these should be excluded from the
estimation of the global transform. Hence, we have included
a procedure for detecting and removing the erroneous local
transforms prior to the global transform estimation. In the
system described, all local transforms are of the same type.
Hence, they will all have the same transform parameters.
Assuming that the relative distortion between the fixed
image and the moving image is a translation, rotation,
scaling, or a combination of these, the true value of each
transform parameter can be approximated by a linear
function of the coordinates of the center of the region. These
linear functions are unknown, but based on the set of
estimated local transforms such a function can be fitted
for each transform parameter. The fitting is done by using
iteratively re-weighted least squares (Heiberger and Becker,
1992; Huber, 1972; Huber, 1981), which is a robust method.
A large fitting error for a region indicates that the local
transform estimation has failed for that region. Regions
where this error exceeds a given threshold are therefore
excluded from the final global transform estimation.

Global Transform Estimation
The estimation of the final global transform is performed
based on the set of local transforms that remain after the
removal of the erroneous ones. First, a set of point coordinates
are selected from regions in the moving image, and then
the target points are determined by applying the estimated
transform for each region to the selected points. The number
of points that are selected for each region depends on the type
of transform (translation, rotation, or affine) that was selected
for the local registration.

The total set of selected points and corresponding target
points makes up our set of tie-points (or control points).
This set of points is used as input to a warping method
provided by ENVI/IDL1. This software offers a selection of
common approaches for warping and resampling, which we
have integrated in our registration tool. For the experiments
reported here, we have chosen to use their RST (Rotation,
Scaling, and Translation) based warping method and
bilinear interpolation.

Experimental Results
The approach presented in this paper is intended for 
co-registration of time series of remote sensing images
originating from identical or similar sensors. This

1 The ENVI® (Environment for Visualizing Images) and IDL®
(Interactive Data Language) software products from ITT
Visual Information Solutions.
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Figure 2. A QuickBird image (Q) of
the center of Oslo. QuickBird image
© DigitalGlobe, 2006, distributed by
courtesy of Eurimage.

Figure 3. The Envisat ASAR image pair: (a) E1,and (b) E2; ©
2005 ESA. The images cover an area around the Oslo
fjord with variations in soil moisture and wet-snow cover.

registration is typically performed after a model-based geo-
referencing based on satellite parameters. One challenge
in the registration of time series of images is that a scene
may change considerably with time, due to changing
seasons and weather conditions. Hence, we have chosen
to evaluate our registration approach on image pairs with
varying degrees of difficulty in terms of differences
between the images to be registered. In the next sections,
our data set, the evaluation procedure, the procedure used
for training and the different experiments are described.
In addition to an evaluation of the performance, some
additional experiments have been performed to evaluate
the effects both of using a region-based strategy and of
the size of the regions that are used.

Data Set
As we wanted to evaluate the performance for several
degrees of difficulty in terms of changes in scene appearance,
we have selected three classes of images with no differences
in content, moderate differences and large differences:

• No differences in content:
One QuickBird image (Q: Figure 2) with resolution 0.6 m, of
the center of Oslo. Image pairs were created from the same
image.

• Moderate differences in content:
A pair of Envisat ASAR images (E1 and E2: Figure 3) with
resolution 100 m, covering an area around the Oslo fjord in
Norway. Challenges are here related to differences in soil
moisture and wet-snow cover.
A pair of Landsat TM images (L1 and L2: Figure 4) with
resolution 25 m, covering mountainous areas in Norway. The
images have varying snow cover. In L1 large areas consist
solely of snow and contain no texture.
A pair of NOAA-AVHRR images (N1, and N2: Figure 5) with
resolution 1 km, covering Norway. Challenges are related to
clouds and differences in snow cover.

• Large differences in content:
Another pair of NOAA-AVHRR images (N2 and N3: Figure 5)
with resolution 1 km, covering Norway. Challenges are related
to substantial differences in both cloud and snow coverage.

To be able to measure the registration performance in
each case, our image pairs were chosen from a set that was
already manually co-registered, and then known geometric
distortions were applied to one image from each pair.
Hence, we could later evaluate performance by comparing

the estimated distortion with the true applied distortion (see
the next section for more details).

In addition, we tested the approach on an image pair
that was not initially co-registered, and where the geometric
distortion was unknown and caused by differences in
satellite paths:

• A pair of MODIS images (M1 and M2, Figure 6) from
different dates with resolution 250 m, covering an area
around Stockholm in Sweden.

The size of all the images was approximately 1,000 � 1,000
pixels.

Evaluation Procedure
To be able to properly evaluate and compare registration
accuracies, we have chosen to perform our experiments
on images where the distortion is known, as this enables
computation of objective measurements in the form of RMS
(root mean square) errors. During operative use of the
system, however, the distortion will not be known.

The evaluation procedure makes use of two images,
A and B, which are already registered to each other. Image B
is then transformed using some known transformation U0 to
obtain image B’. The registration approach to be evaluated is
then used to register image B’ back to image A, resulting in
the transformation UR. Ideally the estimated transform for

Figure 4. The Landsat image pair: (a) L1, and (b) L2. The
images cover mountainous areas in Norway and are
acquired during the snow melting season.
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Figure 6. The MODIS image pair: (a) M1, and (b) M2. The
images cover an area around Stockholm in Sweden. The
images are acquired at two different dates during the
summer season.

Figure 5. The NOAA-AVHRR image triplet: (a) N1, (b) N2, and (c) N3. The images cover Norway
and were acquired at different times during the snow melting season.

this registration should equal U0
�1. The quality of the

registration can thus be measured by the RMS residual
differences between U0

�1(x) and UR(x), or, equivalently, their
corresponding displacements.

To do this we create a displacement map, D0(x,y) � (x,y),
where all transformations applied to image B (the moving
image) are also applied to this displacement map (see
Figure 7). From such a displacement map, we can then
compute the RMS error as follows:

(1)

where n is the number of pixels in the image and, for
each pixel i � (x,y), the errori is the Euclidean distance
(in pixels) between D0(x,y) and D2(x,y). D0 and D2 are the
displacement maps associated with the original and the
registered image, respectively. This means that for each
pixel i, errori expresses how far pixel i has been moved
from its true position.

Image pairs to be used in the evaluation were produced
from the data set described in the previous section, by
keeping one image unchanged and transforming the other

RMS � A
1
n

 a
n

i�1
errori

2,

one. The following transformations were applied, where the
parenthesis give the abbreviations used in the tables:

• Identity,
• Translation by 2, 4, and 8 pixels (T2, T4, T8),
• Rotation by 0.25, 0.5, and 1.0 degrees (R .25°, R .5°, R 1°),
• Scaling of 0.5 percent, 1.0 percent and 2.0 percent (enlarge-

ments) of the original (S .5 percent, S 1 percent, S 2 percent),
• A composition of a translation by two pixels, a rotation by 0.25

degrees and a scaling of 0.5 percent (T 2/S .5 percent/
R .25°).

• A composition of a translation by four pixels, a rotation by
0.5 degrees and a scaling of 1.0 percent (T 4/S 1 percent/R .5°).

The magnitude of these relative distortions corresponds
to displacements from 0 to 10 pixels. Currently, the approach
is not designed to handle much larger distortions than this.

Training
A standard neural network with one input layer, one
hidden layer, and one output layer was defined. The
26 features described in the Features subsection constituted
the input layer, while performance values for the ten
registration algorithms (Table 1) constituted the output
layer. The number of hidden nodes was chosen to be 15.
Direct connections from the input layer to the output layer
were not allowed. This gave a total of 565 parameters
(weights for the connections in the network) that needed to
be estimated in the training phase.

The training was performed as described in the Training
subsection using a set of approximately 4,000 different
training samples (pairs of image regions) fetched from images
originating from different types of sensors. The input (image
features) and the target values (performance in terms of
distance from true distortion) were first normalized, and then
the parameters (weights) of the net were estimated with
Splus (statistical software package) using least squares fitting
and weighting decay (Venables and Ripley, 1994).

Evaluation of Performance Accuracy
To get objective measurements of the performance accuracy,
we have followed the evaluation procedure described in the
previous Evaluation Procedure Section. The experiments
were performed on image pairs from the three classes of
images with no differences, moderate differences and large
differences, as described in the Data Set Section.

Table 2 gives a summary of the results obtained for the
different classes of images. Different parameter settings with
combinations of local transforms and region size (50 � 50
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Figure 7. Transforms and displacement maps involved in the computation of the RMS error.

TABLE 2. RESULTS FROM THE EXPERIMENTS WITH THE ADAPTIVE REGISTRATION APPROACH. THE TABLE
PRESENTS THE RMS ERROR IN PIXELS OBTAINED FOR THE DIFFERENT IMAGES AND DISTORTIONS. FOR THE
IMAGE PAIRS WITH LARGE DIFFERENCES, BOTH RESULTS FOR A REGION SIZE OF 50 � 50 (LEFT) AND

100 � 100 PIXELS (RIGHT), ARE SHOWN. FOR THE OTHER IMAGES THE VARIANCE OVER THE DIFFERENT
EXPERIMENTS WAS SMALL AND THE RMS MEAN IS SHOWN

No diff Moderate differences Large diff

Distortion QB E1, E2 L1, L2 N1, N2 N2, N3

Identity 0.00 0.54 0.92 0.51 0.47 0.25
T2 0.04 0.54 0.97 0.53 2.00 0.60
T4 0.05 0.57 0.94 0.56 3.05 0.85
T8 0.04 0.53 1.03 0.54 10.24 0.53
S .5% 0.05 0.53 0.99 0.54 1.00 0.45
S 1% 0.04 0.46 1.01 0.58 2.76 0.76
S 2% 0.12 0.50 0.90 0.67 5.19 0.85
R .25° 0.03 0.51 1.01 0.52 1.65 0.47
R .5° 0.05 0.51 0.99 0.58 2.41 0.53
R 1° 0.09 0.48 0.93 0.63 7.55 1.38
T 2/S .5%/R .25° 0.04 0.49 0.98 0.56 2.06 0.75
T 4/S 1%/R .5° 0.07 0.53 1.01 0.60 5.03 5.78
RMS mean 0.06 0.52 0.97 0.57 4.55 1.81

and 100 � 100 pixels) were tested. For image pairs with no
differences and moderate differences, only small variations
in RMS errors were observed for different parameter settings.
In Table 2 we have therefore presented the mean of the
RMS errors for these experiments. For the image pair with
large differences, there were larger variations in the results.
Hence, we have here not given the means, but instead
included the RMS error obtained for two of the experiments
to show the variation.

The image pair with no differences was mainly included
to verify that the approach works properly under perfect
conditions, i.e., when there are no differences in content
between the images. A mean RMS error of 0.06 for these
cases, verifies this.

The results for the image pairs with moderate differ-
ences are also presented in Table 2. As can be seen from
this table, the mean RMS error is less than one pixel for
each pair of images. However, we do not know the exact
sub-pixel accuracy of the manual co-registration used as
ground truth for these images as this is difficult to verify.
We have, for instance, observed that through all our
experiments we quite consistently get an RMS error of
about 0.5 for the E1-E2 image pair, 0.9 to 1.0 for the L1-L2
image pair and 0.5 to 0.6 for the N1-N2 image pair. This
may indicate that we actually get better sub-pixel accuracy

with our automatic methods, than what was the case for
the initial manual co-registration.

For the image pair with large differences, the perform-
ance was more sensitive to the choice of region size and
local transform. In Table 2 we have included the results
obtained for two experiments with region sizes 50 � 50
and 100 � 100 pixels. As can be seen, the variation is larger
here. The experiments with the largest region size gave the
best performance. Here, the RMS error was below 1 for
all but the two largest distortions. In the cases where the
registration failed, the problem for this pair of images was
typically that too few regions were selected for registration.
Analyzing the images in more detail (Plate 1a), we see that
quite large areas in image N3 are covered by fragmented
clouds producing a special pattern. Hence, the main prob-
lems here may not be due so much to the differences
between the images, as the large areas that are less suited for
registration due to clouds and homogeneous sea regions.

Finally, we ran our registration approach on a MODIS
image pair (see Figure 6) where the relative distortion was
caused by differences in satellite paths rather than a known
geometric distortion. For this image pair no manually co-
registered result was available, and as the geometric distor-
tion was not known, the RMS error as described could not
be computed. Instead, in Plate 1b, image mosaics, created by
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Plate 1. (a) Detail of the N2, N3 NOAA-AVHRR image pair showing that the image N3 (on the right)
contains a lot of fragmented clouds which complicate the registration, and (b) Results from the
registration of the MODIS image pair for an image detail of the Stockholm archipelago. The first
image shows the detail in the fixed image. The next image shows a mosaic created from the fixed
image and the original moving image before the registration. The red pixels come from the fixed
image and the blue pixels from the moving image. The last image shows the corresponding
mosaic created from the fixed image and the moving image after registration.

alternately fetching tiles from the fixed and moving images,
are included to illustrate the quality of the registration.
The image mosaics show the island Yxlan in the Stockholm
archipelago. The first mosaic is created from the fixed
image and the original moving image. Here we see a broken
coastline indicating the original distortion. In the second
mosaic, created from the fixed and the moving image
resulting from the automatic registration process, the same
coastline is continuous. This indicates that the registration
has been successful.

Examining the Effect of Region Selection
When using a region-based strategy, a necessary condition
for successful registration is that regions are selected in areas
containing the most informative structures. We present two
examples to demonstrate this. Plate 2 shows the regions that
have been selected for registration of two Envisat ASAR images
and two Landsat TM images. For the Landsat image pair, we
see that regions completely covered by snow, containing no
characteristic details, are not selected. For both image pairs,
we see that the regions that are selected are typically found
in areas containing edges of water bodies, and these are
indeed the most informative structures in these images. In the

illustration, the algorithm selected for each region is also
indicated, showing that algorithm M4 (a combination of
Mattes Mutual Information and One Plus One Evolutionary)
appears to be the most frequently selected registration
algorithm. However, the distributions of the selected algo-
rithms are somewhat different for the two image pairs.

To evaluate the adaptive region selection process,
we have also compared this to a traditional registration
approach where the whole image is used in the registration.
To test this, we used our adaptive approach only to select
regions, using the same registration algorithm for all regions.
The results of this process were compared to those obtained
when applying the corresponding registration algorithms to
the entire image as a whole. Experiments were performed on
the Landsat image pair (L1, L2) and the NOAA-AVHRR pair
(N1, N2) with the four largest distortions from the Evaluation
Procedure Section (T8, R1, S2 and T4-S1-R.5). In Table 3 we
have presented the results obtained with the registration
algorithm with the best performance (M4). The table gives
the RMS errors obtained with this algorithm both with and
without the use of regions. From this table it can be seen
that the use of regions generally results in much better
registration accuracies.
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Plate 2. Regions and algorithms that have been selected for registration of (a) two
Envisat ASAR images, and (b) two Landsat TM images. The color coded regions were
the ones selected for registration, and the color indicates which algorithm that was
chosen for each region. (An overview of the available algorithms is given in Table 1).

TABLE 3. COMPARISON OF REGISTRATION RESULTS WITH AND WITHOUT THE USE
OF REGIONS

Using regions (100 � 100) Using entire image

Distortion L1, L2 N1, N2 L1, L2 N1, N2

T8 0.95 0.52 1.37 1.10
S 2% 0.96 0.77 8.69 8.77
R 1° 1.10 0.68 7.58 7.23
T 4/S 1%/R .5° 1.01 0.58 5.73 5.55

Examining the Effect of Region Size
As demonstrated above, the use of regions is fruitful in our
registration approach. In our system, the user will be able
to choose the size of regions. Although the method is not
very sensitive to the choice of region size, there is a rela-
tionship between the ideal region size, and the contents and
the resolution of the image. Typically, we would expect that
for images containing large structures a larger region size
would be better suited. Through our experiments we have
found that region sizes of 50 � 50 and 100 � 100 pixels
both work well. Smaller regions should be avoided, as these
will generally not contain enough information.

For our experiments with an image size of 1,000 �
1,000 pixels, larger regions were not so well suited, as this
will result in a too low total number of regions. In terms
of registration quality there is however no dependency
between image size and region size as long as the region
size allows for a division of the image into a sufficient
number of regions. Finally, a user will often have some
knowledge of the order of magnitude of the distortion,
and should then also select a region size that ensures that
corresponding regions in the fixed and moving images will
overlap enough to give a match.

Conclusions
The approach presented in this paper is intended for 
co-registration of time series of remote sensing images.
For a user who needs to handle different types of time
series, it can be difficult to choose the most appropriate
registration algorithm for each case. Our system aims at

simplifying this process for the user, by offering a tool that
automatically chooses a registration algorithm based on
image characteristics. During a training phase, the system
learns the relationship between image features and per-
formance for a set of registration algorithms. At run-time,
the system can then predict the performance for each
algorithm from image features. This strategy is applied to
image regions. Hence, the most appropriate algorithm can
be selected for each region, and regions unsuited for
registration can be discarded.

The approach has been tested on a selection of image
pairs from different sensors, presenting different types
of content and different degrees of difficulty in terms of
differences between the images to be registered. The results
from these experiments have demonstrated that the adaptive
approach works well and that the same approach can be
applied to different types of time series with different
types of contents without tedious testing and tuning. The
approach is also able to handle images with at least moder-
ate differences in contents, selecting different registration
algorithms for different regions and discarding regions that
are not suited for registration. In conclusion, the experi-
ments show that both the learning-based and the region-
based approaches are fruitful.

In addition to simplifying the registration process for
the user, this approach may also open for new possibilities,
such as simple integration of predefined masks. Cloud
masks could, for instance, easily be exploited by excluding
regions covered by the mask from the local registration.
Furthermore, our system can easily be extended to include
more registration algorithms. In future work we will also
consider inclusion of a multi-resolution strategy to extend
the approach to work for larger distortions.
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