PE&RS June 2015 - page 470

Benediktsson, J.A., J. Chanussot, and W.M. Moon, 2014. Very
high-resolution remote sensing: Challenges and opportunities,
Proceedings of the IEEE
, 100(6):1907–1910.
Benz, U.C., P. Hofmann, G. Willhauck, I. Lingenfelder, and M.
Heynen, 2004. Multi-resolution, object-oriented fuzzy analysis of
remote sensing data for GIS-ready information,
ISPRS Journal of
Photogrammetry and Remote Sensing
, 58(3-4):239–258.
Blaschke, T., 2010. Object based image analysis for remote sensing,
ISPRS Journal of Photogrammetry and Remote Sensing
,
65(1):2–16.
Blaschke, T., G.J. Hay, M. Kelly, S. Lang, P. Hofmann, E. Addink, R.Q.
Feitosa, F. van der Meer, H. van der Werff, F. van Coillie, and D.
Tiede, 2014. Geographic Object-Based Image Analysis - Towards
a new paradigm,
ISPRS Journal of Photogrammetry and Remote
Sensing
, 87:180–191.
Borenstein, E., and S. Ullman, 2008. Combined top-down/bottom-
up segmentation,
IEEE Transactions on Pattern Analysis and
Machine Intelligence
, 30(12):2109–2125.
Bruzzone, L., and L. Carlin, 2006. A multilevel context-based system
for classi cation of very high spatial resolution images,
IEEE
Transactions on Geoscience and Remote Sensing
, 44(9):2587–2600.
Burnett, C., and T. Blaschke, 2003. A multi-scale segmentation/object
relationship modeling methodology for landscape analysis,
Ecological Modelling
, 168(3):233–249.
Câmara, G., R.C.M. Souza, U.M. Freitas, and J. Garrido, 1996. Spring:
Integrating remote sensing and GIS by object-oriented data
modelling,
Computers and Graphics
, 20(3):395–403.
Cardoso, J.S., and L. Corte-Real, 2005. Toward a generic evaluation
of image segmentation,
IEEE Transactions on Image Processing
,
14(11):1773–1782.
Carleer, A.P., O. Debeir, and E. Wolff, 2005. Assessment of very
high spatial resolution satellite image segmentations,
Photogrammetric Engineering & Remote Sensing
, 71(11):1285–
1294.
Castilla, G., G.J. Hay, and J.R. Ruiz, 2008. Size-constrained region
merging (SCRM): An automated delineation tool for assisted
photo interpretation,
Photogrammetric Engineering & Remote
Sensing
, 74(4):409–419.
Clinton, N., A. Holt, J. Scarborough, Y. Li, and P. Gong, 2010.
Accuracy assessment measures for object-based image
segmentation goodness,
Photogrammetric Engineering & Remote
Sensing
, 76(3):289–299.
Comaniciu, D., and P. Meer, 2002. Mean shift: A robust approach
toward feature space analysis,
IEEE Transactions on Pattern
Analysis and Machine Intelligence
, 24(5):603–619.
Dey, V., Y. Zhang, and M. Zhong, 2010. A review on image
segmentation techniques with remote sensing perspective,
Proceedings of the ISPRS TC-VII Symposium - 100 Years ISPRS,
XXXVIII
(W. Wagner and B. Székely, editors), Vienna, Austria,
(7A):31–42.
Dr
ǎ
gu
ţ
, L., D. Tiede, and S.R. Levick, 2010. ESP: A tool to estimate
scale parameter for multiresolution image segmentation of
remotely sensed data,
International Journal of Geographical
Information Science
, 24(6):859–871.
Felzenszwalb, P.F., and D.P. Huttenlocher, 2004. Efficient graph-based
image segmentation,
International Journal of Computer Vision
,
59(2):167–181.
Hay, G.J., and G. Castilla, 2006. Object-based image analysis:
Strengths, weaknesses, opportunities and threats (SWOT),
Proceeding of the 1
st
International Conference of OBIA
, URL:
_
Opening%20Session/OBIA2006_Hay_Castilla.pdf
(last date
accessed: 11 April 2015).
Hubert, L., and P. Arabie, 1985.Comparing partitions,
Journal of
Classification
, 2(1):193–218.
Martin, D.R., 2003.
An Empirical Approach to Grouping and
Segmentation
, Ph.D. dissertation, Computer Science Division,
University of California, Berkeley, California, Report No. UCB/
CSD-3-1268.
Neubert, M., H. Herold, and G. Meinel, 2008. Assessing image
segmentation quality - Concepts, methods and application,
Object-Based Image Analysis
, Springer Berlin Heidelberg, pp.
769–784.
Sharon, E., M. Galun, D. Sharon, R. Basri, and A. Brandt, 2006.
Hierarchy and adaptivity in segmenting visual scenes,
Nature
,
442(17):810–813.
Tilton J.C., Y. Tarabalka, P.M. Montesano, and E. Gofman, 2012. Best
merge region-growing segmentation with integrated nonadjacent
region object aggregation,
IEEE Transactions on Geoscience and
Remote Sensing
, 50(11):4454–4467.
Trémeau, A., and P. Colantoni, 2000. Region adjacency graph applied
to color image segmentation,
IEEE Transactions on Image
Processing
, 9(4):735–744.
Vincent, L., and P. Soille, 1991. Watershed in digital spaces: An
efficient algorithm based on immersion simulations,
IEEE
Transactions on Pattern Analysis and Machine Intelligence
,
13(6):583–598.
Wang, Z., J.R. Jensen, and J. Im, 2010. An automatic region-based
image segmentation algorithm for remote sensing applications,
Environmental Modelling & Software
, 25(10):1149–1165.
Yang, J., P. Li, and Y. He, 2014. A multi-band approach to
unsupervised scale parameter selection for multi-scale image
segmentation,
ISPRS Journal of Photogrammetry and Remote
Sensing
, 94, pp. 13–24.
Yu, Q., and D.A. Clausi, 2008. IRGS: Image segmentation using edge
penalties and region growing,
IEEE Transactions on Pattern
Analysis and Machine Intelligence
, 30(12):2126–2139.
Zhang, X., P. Xiao, and X. Feng, 2012. An unsupervised evaluation
method for remotely sensed imagery segmentation,
IEEE
Geoscience and Remote Sensing Letters
, 9(2):156–160.
Zhang, X., P. Xiao, X. Song, and J. She, 2013. Boundary-constrained
multi-scale segmentation method for remote sensing images,
ISPRS Journal of Photogrammetry and Remote Sensing
,
78:15–25.
Zhang, X., P. Xiao, and X. Feng, 2014. Fast hierarchical segmentation
of high-resolution remote sensing image with adaptive edge
penalty,
Photogrammetric Engineering & Remote Sensing
,
80(1):71–80.
Zhang, Y., 2002. Problems in the fusion of commercial high-
resolution satellite images as well as Landsat 7 images and
initial solutions,
International Archives of Photogrammetry and
Remote Sensing
, 34, Part 4.
470
June 2015
PHOTOGRAMMETRIC ENGINEERING & REMOTE SENSING
419...,460,461,462,463,464,465,466,467,468,469 471,472,473,474,475,476,477,478,479,480,...518
Powered by FlippingBook