PE&RS June 2016 Full - page 446

Beyer, H.L., 2012.
Geospatial Modeling Environment (Version 0.6.0.0)
,
URL:
(last date accessed: 26
April 2016).
Blaszczynski, J.S., 1997. Landform characterization with geographic
information systems,
Photogrammetric Engineering & Remote
Sensing
, 63(2):183–191.
Breiman, L., 1996. Bagging predictors,
Machine Learning
, 24(2):123–140.
Breiman, L., 2001. Random forests,
Machine Learning
, 45(1):5–32.
Burrough, P.A., and R.A. McDonell,. 1998.
Principles of Geographical Infor-
mation Systems
, Second edition, Oxford Press, New York, 356 p.
Burkholder, A., T.A. Warner, M. Culp, and R.E. Landenberger, 2011.
Seasonal trends in separability of leaf reflectance spectra for
Ailanthus altissima
and four other tree species
, Photogrammetric
Engineering & Remote Sensing
, 77(8):793–804.
Butera, M.K., 1983. Remote sensing of wetlands,
IEEE Transactions
on Geoscience and Remote Sensing
, GE-21(3):383–392.
Bwangoy, J.B., M.C. Hansen, D.P. Roy, G. De Grandi, and C.O. Justice,
2010. Wetland mapping in the Congo Basin using optical and
radar remotely sensed data and derived topographical indices,
Remote Sensing of Environment
, 114:73–86.
Cowardin, L.M., V. Carter, F.C. Golet, and E.T. LaRoe, 1974.
Classification of Wetlands and Deepwater Habitat of the United
States
, U.S. Department of the Interior, Fish and Wildlife
Service, Washington, D.C.
Corcoran, J., J. Knight, B. Brisco, S. Kaya, A. Cull, and K. Murnaghan,
2011. The integration of optical, topographic, and radar data for
wetland mapping in northern Minnesota,
Canadian Journal of
Remote Sensing
, 37(5):564–582.
Costa, M.P.F., and K.H. Telmer, 2006. Utilizing SAR imagery and
aquatic vegetation to map fresh and brackish lakes in the
Brazilian Pantanal wetland,
Remote Sensing of Environment
,
105(3):204–213.
Crowley, S., C.O’Brian, and S. Shea, 1988.
Results of the Wetland
Study on the 1988 Wetland Rules
, The Vermont Agency of
Natural Resources Division of Water Quality, Waterbury, Vermont.
Cutler, D.R., T.C. Edwards, Jr., K.H. Beard, A. Cutler, K.T. Hess, J.
Gibson, and J.J
.
Lawler, 2007. Random Forests for classification
in ecology,
Ecology
, 88(11):2783–2792.
Del Frate, F., G. Schiavon, D. Solimini, M. Borgeaud, D.H.
Hoekman, and M.A.Vissers, 2003. Crop classification using
multiconfiguration C-band SAR data,
IEEE Transactions on
Geoscience and Remote Sensing
, 41(7):1611–1619.
Delong, E.R., D.M. Delong, and D.L. Clarke-Pearson, 1988. Comparing
the areas under two or more correlated receiver operating
characteristic curves: A nonparametric approach,
Biometrics
,
44:837–845.
De Reu, J., J. Bourgeois, M. Bats, A. Zwertvaegher, V. Gelorini, P.
De Smedt, W. Chu, M. Antrop, P. De Maeyer, P. Finke, M. Van
Meirvenne, J. Verniers, and P
.
Crombé, 2013. Application of
the topographic position index to heterogeneous landscapes,
Geomorphology
, 186:39–49.
Esri, 2012.
ArcGIS Desktop: Release 10.1
. Environmental Systems
Research Institute, Redlands, California.
Evans, J.S., and J.M. Kiesecker, 2014. Shale gas, wind and water:
Assessing the potential cumulative impacts of energy
development of ecosystem services within the Marcellus play,
PLoS ONE
, 9(2):e89210.
Evans, I.S., 1972. General geomorphometry, derivatives of altitude,
and descriptive statistics,
Spatial Analysis in Geomorphology
(R.J. Chorley, editor), Harper & Row, New York, pp. 17–90.
Evans, J.S., J. Oakleaf, S.A. Cushman, and D. Theobald, 2014. An
ArcGIS Toolbox for Surface Gradient and Geomorphometric
Modeling, Version 2.0-0. URL:
evansspatial
(last date accessed: 26 April 2016).
Evans, J.S., and S.A. Cushman, 2009. Gradient modeling of conifer
species using random forests,
Landscape Ecology
, 24(5):673–683.
Fawcett, T., 2006. An introduction to ROC analysis,
Pattern
Recognition Letters
, 27(8):861–874.
Fedorko, E.J., 2005. An accuracy assessment of SAMB elevation data,
Report, West Virginia Technical Center, URL:
.
wvu.edu
(last date accessed: 26 April 2016).
Frazier, P.S., and K.J. Page, 2000. Water body detection and
delineation with Landsat TM data,
Photogrammetric Engineering
& Remote Sensing
, 66(12):1461–1468.
Frohn, R.C., M. Rief, C. Lane, and B. Autrey, 2009. Satellite remote
sensing of isolated wetland using object-oriented classification of
Landsat-7 data,
Wetlands
, 29(3):931–941.
Genuer, R., J.M. Poggi, and C. Tuleau-Malot, 2010. Variable selection using
Random Forests,
Pattern Recognition Letters
, 31(14):2225–2236.
Georgiou, S., and R.K. Turner, 2012.
Valuing Ecosystem Services: The
Case of Multi- Functional Wetlands
, Routledge, New York, 240 p.
Gessler, P.E., I.D. Moore, N.J. McKenzie, and P.J. Ryan, 1995. Soil-
landscape modelling and spatial prediction of soil attributes,
International Journal of Geographic Information Systems
,
9(4):421–432.
Ghimire, B., J. Rogan, V. Rodríguez-Galiano, P. Panday, and N. Neeti,
2012. An evaluation of bagging, boosting, and random forests
for land-cover classification in Cape Cod, Massachusetts, USA,
GIScience & Remote Sensing
, 49(5):623–643.
Gong, J., C. Jiao, D. Zhou, and N. Li, 2011. Scale issues of wetland
classification and mapping using remote sensing images: A case
of Honghe Nature Reserve in Shanjiang Plain, Northeast China,
Chinese Geographical Science
, 21(2);230–240.
Hanley, J.A., and B.J. McNeil, 1982. The meaning and use of the area
under a receiver operating characteristic (ROC) curve,
Radiology
,
143:29–36.
Hansen, M.C., and B. Reed, 2000. A comparison of the IGBP DISCover
and University of Maryland 1 km global land-cover products,
International Journal of Remote Sensing
, 21(6-7):1365–1373.
Hansen, M., R. Dubayah, and R. DeFries, 1996. Classification trees:
An alternative to traditional land cover classifiers,
International
Journal of Remote Sensing
, 17(5):1075–1081.
Hess, L.L., J.M. Melack, S. Filoso, and W. Yong, 1995. Delineation
of inundated area and vegetation along the Amazon floodplain
with the SIR-C synthetic aperture radar,
IEEE Transactions on
Geoscience and Remote Sensing
, 33(4):404–428.
Hess, L.L., J.M. Melack, and D.S. Simonett, 1990. Radar detection
of flooding beneath the forest canopy: A review,
International
Journal of Remote Sensing
, 11(7):1313.
Hogg, A.R., and K.W. Todd, 2007. Automated discrimination of
upland and wetland using terrain derivatives,
Canadian Journal
of Remote Sensing
, 33(1):S68–S83.
Huang, C., L.S. Davis, and J.R.G. Townshend, 2002. An assessment
of support vector machines for land cover classification,
International Journal of Remote Sensing
, 23(4):725–749.
Knight, J.F., B.P. Tolcser, J.M. Corcoran, and L.P. Rampi, 2013. The
effects of data selection and thematic detail on the accuracy of
high spatial resolution wetland classification,
Photogrammetric
Engineering & Remote Sensing
, 79(7):613–623.
Kudray, G.M., and M.R. Gale, 2000. Evaluation of National Wetland
Inventory maps in a heavily forested region in the upper great
lakes,
Wetlands
, 20(4):581–587.
Leahy, S., 2003. Wetlands from space: The national wetland
inventory,
Conservatory
, 24:13–16.
Kuzila, M.S., D.C. Rundquist, and J.A. Green, 1991. Methods for
estimating wetland loss: The Rainbasin region of Nebraska, 1927-
1981,
Journal of Soil and Water Conservation
, 46(6):441–445.
Liaw, A., and M. Wiener, 2002. Classification and regression by
Random Forest,
R News
, 2(3):18–22.
Loosvelt, L., J. Peters, H. Skriver, H. Lievens, F.M.B. Van Coillie, B. De
Baets, and N.E.C. Verhoest, 2012. Random Forests as a tool for
estimating uncertainty at pixel-level in SAR image classification,
International Journal of Applied Earth Observation and
Geoinformation
, 19:173–184.
Manju, G., V.M. Chowdary, Y.K. Srivastava, S. Selvamani, A. Jeyaram,
and S. Adiga, 2005. Mapping and characterization of inland
wetlands using remote sensing and GIS,
Journal of the Indian
Society of Remote Sensing
, 33(1):51–61.
Maxwell, A.E., 2013. Researchers develop an effective approach to
forest cover analysis,
ESRI News for Forestry
, 2013(Spring):6–7.
446
June 2016
PHOTOGRAMMETRIC ENGINEERING & REMOTE SENSING
387...,436,437,438,439,440,441,442,443,444,445 447,448,449,450
Powered by FlippingBook