Maxwell, A.E., T.A. Warner, and M.P. Strager, 2014. Combining
RapidEye satellite imagery and lidar for mapping of mining
and mine reclamation,
Photogrammetric Engineering & Remote
Sensing
, 80(2):179–189.
Maxwell, A.E., T.A. Warner, M.P. Strager, J.F. Conley, and A.L. Sharp,
2015. Assessing machine learning algorithms and image- and
LiDAR-derived variables for GEOBIA classification of mining
and mine reclamation,
International Journal of Remote Sensing
,
36(4):954–978.
McNab, W.H., and P.E. Avers, 1994.
Ecological Subregions of the
United States
, United States Department of Agriculture Forest
Service, URL:
(last
date accessed: 26 April 2016).
Merot, P., H. Squividant, P. Aurousseau, M. Hefting, T. Burt, V. Maitre,
M. Kruk, A
.
Butturini, C. Thenail, and V. Viaud, 2003. Testing a
climo-topographic index for predicting wetlands distribution along
an European climate gradient,
Ecological Modelling
, 163:51–71.
Mitch, W.J., and J.G. Gosselink, 2007.
Wetlands
, Fourth edition.,
Wiley & Sons, Hoboken, New Jersey, 582 p.
Mitsch, W.J., B. Bernal, A.M. Nahlik, Ü. Mander, L. Zhang, C.J.
Anderson, S.E
.
Jørgensen, and H. Brix, 2013. Wetlands, carbon,
and climate change,
Landscape Ecology
28(4):583–597.
Moore, I.D., P.E. Gessler, G.Z. Nielsen, and G.A. Petersen, 1993.
Terrain attributes: Estimation methods and scale effects,
Modeling Change in Environmental Systems
(A J. Jakeman,
M.B. Beck, and M. McAleer, editors), Wiley, London, United
Kingdom, pp. 189–214.
Moore, I.D., R.B. Grayson, and A.R. Landson, 1991. Digital terrain
modeling: A review of hydrological, geomorphological, and
biological applications,
Hydrological Processes
, 5:3–30.
Nichols, 1994. Map
Accuracy of the National Wetland Inventory
Maps for Areas Subject to Maine Land Use Regulation
Commission Jurisdiction
, U.S. Fish and Wildlife Service, Hadley,
Maine, Ecological Services Report R5-94/6.
Ozesmi, S.L., and M.E. Bauer, 2002. Satellite remote sensing of
wetlands,
Wetlands Ecology and Management
, 10(5):381–402.
Pal, M., and P.M. Mather, 2003. An assessment of the effectiveness
of decision tree methods for land cover classification,
Remote
Sensing of Environment
, 86:554–565.
Pal, M., and P.M. Mather, 2005. Support vector machines for
classification in remote sensing,
International Journal of Remote
Sensing
, 26(5):1007–1011.
Pepe, M., G. Longton, and H. Janes, 2009. Estimation and comparison of
Receiver Operating Characteristic Curves,
The Stata Journal
, 9:1.
Rampi, L.P., J.F. Knight, and K.C. Pelletier, 2014. Wetland mapping
in the Upper Midwest United States: An object-based approach
integrating lidar and imagery data,
Photogrammetric Engineering
& Remote Sensing
, 80(5):439–449.
R Core Development Team, 2012. R: A Language and Environment for
Statistical Computing, R Foundation for Statistical Computing,
Vienna, Austria, URL:
/
(last date
accessed: 26 April 2016)
Riley, S.J., S.D. DeGloria, and R. Elliot, 1999. A terrain ruggedness
index that quantifies topographic heterogeneity,
Intermountain
Journal of Science
, 5:1–4.
Robin, X., N. Turck, A. Hainard, N. Tiberti, F. Lisacek, J. Sanchez, and
M. Müller, 2011
.
pROC: An open-source package for R and S+ to
analyze and compare ROC curves,
BMC Bioinformatics
, 12:77.
Rodríguez-Galiano, V.F., F. Abarca-Hernández, B. Ghimire, M. Chica-
Olmo, P.M
.
Atkinson, and C. Jeganathan, 2011. Incorporating
spatial variability measures in land-cover classification using
random forests,
Procedia Environmental Sciences
, 3:44–49.
Rodríguez-Galiano, V.F., B. Ghimire, J. Rogan, M. Chica-Olmo, and
J.P. Rigol-Sanchez, 2012a. An assessment of the effectiveness of
a random forest classifier for land-cover classification,
ISPRS
Journal of Photogrammetry and Remote Sensing
, 67:93–104.
Rodríguez-Galiano, V.F., M. Chica-Olma, F. Abarca-Hernández, P.M.
Atkinson, and C
.
Jeganathan. 2012b. Random forest classification of
Mediterranean land cover using multi-seasonal imagery and multi-
seasonal texture,
Remote Sensing of Environment
, 121:93–107.
Rogan, J., J. Miller, D. Stow, J. Franklin, L. Levien, and C. Fischer,
2003. Land-cover change monitoring with classification
trees using Landsat TM and ancillary data,
Photogrammetric
Engineering & Remote Sensing
, 69(7):793–804.
Rosenqvist, A., M. Shimada, B. Chapman, K. McDonald, G. De
Grandi, H. Jonsoon, C
.
Williams, Y. Rauste, M. Nilsson, D. Sango,
and M. Matsumoto, 2004. An overview of the JERS-1 SAR
global boreal forest mapping (GBFM) project,
Proceeding of the
Geoscience and Remote Sensing Symposium 2004
.
Sader, S.A., D. Ahl, and W. Liou, 1995. Accuracy of Landsat-TM
and GIS rule-based methods for forest wetland classification in
Maine,
Remote Sensing of Environment
, 53(3):133–144.
Sheoran, A.S., and V. Sheoran, 2006. Heavy metal removal
mechanism of acid mine drainage in wetlands: A critical review,
Minerals Engineering
, 19(2):105–116.
Steele, B.M., 2000. Combining multiple classifiers: An application
using spatial and remotely sensed information for land cover
mapping,
Remote Sensing of Environment
, 74(3):545–556.
Stolt, M.H., and J.C. Baker, 1995. Evaluation of the National Wetland
Inventory maps to inventory wetlands in the southern Blue
Ridge of Virginia,
Wetlands
, 15(4):346–353.
Strager, M.P, J.M. Strager, J.S. Evans, J.K. Dunscomb, B.J. Kreps, and
A.E. Maxwell, 2015. Combining a spatial model and demand
forecasts to map future surface coal mining in Appalachia,
PLoS
ONE
, 10(6):e0128813.
Strausbaugh, P.D., and E.L. Core, 1997.
Flora of West Virginia
, Seneca
Books, Morgantown, West Virginia, 1,079 p.
Strobl, C., A.L. Boulesteix, T. Kneib, T. Augustin, and A. Zeileis,
2008. Conditional variable importance for random forests,
BMC
Bioinformatics
, 9(307):1–11.
Strobl, C., T. Hothorn, and A. Zeileis, 2009. Party on! A new,
conditional variable-importance measure for Random Forests
available in the party package,
The R Journal
,1-2:14–17.
Swarthout, D.J., W.P. MacConnell, and J.T. Finn, 1981. An evaluation
of the National Wetland Inventory in Massachusetts,
In-place
Resource Inventories: Principles and Practices, Proceedings of
the National Workshop
, Orone, Maine, pp. 685–691.
Swets, J., 1988. Measuring the accuracy of diagnostic systems,
Science
, 240: 1285-1293.
Tiner, R.W., 1997. NWI maps: What they tell us,
National Wetlands
Newsletter
, 19(2): 7–12.
Townsend, P.A., and S.J. Walsh, 2001. Remote sensing of forested
wetlands: applications of multitemporal and multispectral
satellite imagery to determine plant community composition and
structure in southeastern USA,
Plant Ecology
, 157(2):129–149.
Treitz, P., and P. Howarth, 2000. Integrating spectral, spatial,
and terrain variables for forest ecosystem classification,
Photogrammetric Engineering & Remote Sensing
, 66(3):305–318.
Venkatraman, E.S., and C.B. Begg, 1996. A distribution-free procedure
for comparing receiver operating characteristics curves form a
paired experiment,
Biometrika
, 83(4):835–848.
Venkatraman, E.S., 2000. A permutation test to compare receiver
operating characteristic curves,
Biometrics
, 56(4):1134–1138.
Waske, B., and M. Braun, 2009. Classifier ensembles for land cover
mapping using multiemporal SAR imagery
, ISPRS Journal of
Photogrammetry and Remote Sensing
, 64(5):450-457.
Wickham, H., 2011. The split-apply-combine strategy for data
analysis,
Journal of Statistical Software
, 40:1–29.
Wright, C., and A. Gallant, 2007. Improved wetland remote sensing in
Yellowstone National Park using classification trees to combine
TM imagery and ancillary environmental data,
Remote Sensing
of Environment
, 107(4):587–605.
Xie, Y., A. Zhang, and W. Welsh, 2015. Mapping wetlands and
Phragmites
using publically available remotely sensed images,
Photogrammetric Engineering & Remote Sensing
, 81(1):69–78.
Zeverbergen, L.W., and C.R. Thorne, 1987. Quantitative analysis
of land surface topography,
Earth Surface Processes and
Landforms
, 12:47–56.
(Received 28 August 2015; accepted 06 November 2015; final
version 22 December 2015)
PHOTOGRAMMETRIC ENGINEERING & REMOTE SENSING
June 2016
447