Guo, G., H. Wang, D. Bell, Y. Bi, and K. Greer, 2003. KNN model-
based approach in classification,
Lecture Notes in Computer
Science
, 2888:986-996.
Hao, M., W. Shi, K. Deng, H. Zhang, and P. He, 2016. An object-based
change detection approach using uncertainty analysis for VHR
Images,
Journal of Sensors
, 2016:1-17.
Hatami, N., and R. Ebrahimpour, 2007. Combining multiple
classifiers: Diversify with boosting and combining by stacking,
International Journal of Computer Science
, Vol. 7, pp. 127-131.
He, L., and I. Laptev, 2009. Robust change detection in dense urban
areas via SVM classifier,
Urban Remote Sensing Event
, pp.1-5
Hou, B., Q. Liu, and Y. Wang, 2015. Object-based feature extraction
and semi-supervised classification for urban change detection
using high-resolution remote sensing images,
Proceedings of the
Geoscience and Remote Sensing Symposium
, pp.1674-1677.
Huang, G.B., Q.Y. Zhu, and C.K. Siew, 2005. Extreme learning
machine: A new learning scheme of feedforward neural
networks,
Proceedings of the IEEE International Joint Conference
on Neural Networks
, 2:985-990.
Huang, G.B., Q.Y. Zhu, and C.K. Siew, 2006. Extreme learning machine:
Theory and applications,
Neurocomputing
, 70(1):489-501.
Huang, X., D. Wen, J. Li, and R. Qin, 2017. Multi-level monitoring of
subtle urban changes for the megacities of China using high-
resolution multi-view satellite imagery,
Remote Sensing of
Environment
, 56: 56-75.
Huang, X., L. Zhang, and T. Zhu, 2013. Building change detection
from multitemporal high-resolution remotely sensed images
based on a morphological building index,
IEEE Journal of
Selected Topics in Applied Earth Observations & Remote
Sensing
, 7(1):105-115.
Iscan, H., and M. Gunduz, 2015. A survey on fruit fly optimization
algorithm,
Proceedings of the International Conference on
Signal-Image Technology & Internet-Based Systems
, pp. 1674-
1677.
Jawak, S.D., S.N. Panditrao, and A.J. Luis, 2014. Enhanced urban
landcover classification for operational change detection
study using very high resolution remote sensing data,
ISPRS -
International Archives of the Photogrammetry, Remote Sensing
and Spatial Information Sciences
, XL-8(1):773-779.
Khodadadzadeh, M., J. Li, A. Plaza, and J.M. Bioucas-Dias, 2014. A
subspace-based multinomial logistic regression for hyperspectral
image classification,
IEEE Geoscience & Remote Sensing Letters
,
11(12):2105-2109.
Li, J., J.M. Bioucas-Dias, and A. Plaza, 2012. Spectral-spatial
hyperspectral image segmentation using subspace multinomial
logistic regression and Markov Random Fields,
IEEE
Transactions on Geoscience & Remote Sensing
, 50(3):809-823.
Li, Q., X. Huang, D. Wen, and H. Liu, 2017. Integrating multiple
textural features for remote sensing image change detection,
Photogrammetric Engineering & Remote Sensing
, 83(2):109-121.
Li, Y., and A. Ngom, 2013. Classification approach based on non-
negative least squares,
Neurocomputing
, 118(11):41-57.
Lin, S.C., Y.C.I. Chang, and W.N. Yang, 2009. Meta-learning
for imbalanced data and classification ensemble in binary
classification,
Neurocomputing
, 73(1-3):484-494.
Lo, C.P., and X. Yang, 2000. Relative radiometric normalization
performance for change detection from multi-date satellite
images,
Photogrammetric Engineering & Remote Sensing
,
66(8):967-980.
Lv, P.,Y. Zhong, J. Zhao, and L. Zhang, 2015. Unsupervised change
detection based on conditional random fields and texture feature
for high resolution remote sensing imagery,
Proceedings of the
IEEE China Summit and International Conference on Signal and
Information Processing
, pp. 1081-1085
Malmir, M., M.M. Zarkesh, S.M. Monavari, S.A. Jozi, and E. Sharifi,
2015. Urban development change detection based on multi-
temporal satellite images as a fast tracking approach-A case
study of Ahwaz County, southwestern Iran,
Environmental
Monitoring & Assessment
, 187(3):4295.
Moser, G., E. Angiati, and S.B. Serpico, 2011. Multiscale
unsupervised change detection on optical images by Markov
Random Fields and wavelets,
IEEE Geoscience & Remote
Sensing Letters
, 8(4):725-729.
Nemmour, H., and Y. Chibani, 2006. Multiple support vector
machines for land cover change detection: An application for
mapping urban extensions,
ISPRS Journal of Photogrammetry &
Remote Sensing
, 61(2):125-133.
Nemmour, H., and Y. Chibani, 2013. Change detector combination
in remotely sensed images using fuzzy integral,
International
Journal of Signal Processing
, (4):175.
Pan, W.T., 2012. A new fruit fly optimization algorithm: Taking
the financial distress model as an example,
Knowledge-Based
Systems
, 26(2): 69-74.
Peng, D., and Y. Zhang, 2017. Object-based change detection from
satellite imagery by segmentation optimization and multi-
features fusion,
International Journal of Remote Sensing
,
38(13):3886-3905.
Rodriguez, J.J., L.I. Kuncheva, and C.J. Alonso, 2006. Rotation forest:
A new classifier ensemble method,
IEEE Transactions on Pattern
Analysis & Machine Intelligence
, 28(10):1619-1630.
Rojarath, A., W. Songpan, and C. Pong-Inwong, 2017. Improved
ensemble learning for classification techniques based on majority
voting,
Proceedings of the IEEE International Conference on
Software Engineering and Service Science
, pp. 107-110.
Roy, M., S. Ghosh, and A. Ghosh, 2012. A semi-supervised change
detection for remotely sensed images using ensemble classifier,
Proceedings of the International Conference on Intelligent
Human Computer Interaction
, 3(1):1-5.
Roy, M., S. Ghosh, and A. Ghosh, 2014. A novel approach for change
detection of remotely sensed images using semi-supervised
multiple classifier system,
Information Sciences
, 269(8):35-47.
Seewald, A.K., 2002. Exploring the parameter state space of stacking,
Proceedings of the IEEE International Conference on Data
Mining
, pp. 685.
Sesmero, M.P., A.I. Ledezma, and A. Sanchis, 2015. Generating
ensembles of heterogeneous classifiers using Stacked
Generalization,
Wiley Interdisciplinary Reviews Data Mining &
Knowledge Discovery
, 5(1):21–34.
Skurichina, M., and R.P.W. Duin, 2010. The random subspace method
for linear classifiers,
International Journal on Pattern Analysis
and Applications
, 5(2):121-135.
Skurichina, M., L. Kuncheva, and R.P.W. Duin, 2002. Bagging and
boosting for the nearest mean classifier: Effects of
Sample Size
on Diversity and Accuracy
,
Proceedings of the International
Workshop on Multiple Classifier Systems
, 2364: 62-71.
Ting, K.M., and I.H. Witten, 2002. Issues in stacked generalization,
Journal of Artificial Intelligence Research
, 10(1):271-289.
Vapnik, N. and N. Vladimir, 1997. The nature of statistical learning
theory,
IEEE Transactions on Neural Networks
, 38(4):409-409.
Volpi, M., D. Tuia, F. Bovolo, M. Kanevski, and L. Bruzzone, 2013.
Supervised change detection in VHR images using contextual
information and support vector machines,
International Journal
of Applied Earth Observation & Geoinformation
, 20(2):77-85.
Wen, D., X. Huang, L. Zhang, and J.A. Benediktsson, 2015. A
novel automatic change detection method for urban high-
resolution remotely sensed imagery based on multiindex scene
representation,
IEEE Transactions on Geoscience & Remote
Sensing
, 54(1):609-625.
Woo, D.-M., and V.D. Do, 2015. Post-classification change detection
of high resolution satellite images using adaboost classifier,
Information Technology and Computer Science
, pp. 34-38.
Xia, J., M.D. Mura, J. Chanussot, P. Du, and X. He, 2015. Random
subspace ensembles for hyperspectral image classification with
extended morphological attribute profiles,
IEEE Transactions on
Geoscience & Remote Sensing
, 53(9):4768-4786.
PHOTOGRAMMETRIC ENGINEERING & REMOTE SENSING
November 2018
741