PE&RS April 2015 - page 315

Eyndt, T., and W. Volkmann, 2013. UAS as a tool for surveyors: from
tripods and trucks to virtual surveying,
GIM International
,
27:20–25.
Faiçal, B.S., F.G. Costa, G. Pessin, J. Ueyama, H. Freitas, A. Colombo,
P.H. Fini, L. Villas, F.S. Osório, P.A. Vargas, and T. Braun, 2014.
The use of unmanned aerial vehicles and wireless sensor net-
works for spraying pesticides,
Journal of Systems Architecture
,
60(4):393-404.
Fang, P., J. Lu, Y. Tian, and Z. Miao, 2011. Advanced in control
engineering and information science,
Procedia Engineering
,
15:634–638.
Fang, P., J. Lu, Y. Tian, and Z. Miao, 2011. An improved object track-
ing method in UAV videos,
Procedia Engineering
, 15:634–638.
Feifei, X., L. Zongjian, G. Dezhu, and L. Hua, 2012. Study on con-
struction of 3D building based on UAV images,
The International
Archives of the Photogrammetry, Remote Sensing and Spatial
Information Sciences
, XXXIX-B1:469–473.
Feng Q., J. Liu, and J. Gong, 2015. UAV remote sensing for urban
vegetation mapping using random forest and texture analysis,
Remote Sensing, 7(1):1074–1094.
Feng, W., W.Yundong, and Z. Qiang, 2009. UAV borne real-time road
mapping system,
Joint Urban Remote Sensing Event
, pp. 1–7.
Finn, A., and S. Franklin, 2011. UAV-based atmospheric tomography,
Proceedings of the ACOUSTICS
, 02-04 November, Gold Coast,
Australia, 5 pages.
Fiorillo, F., B. Jiménez, F. Remondino, and S. Barba, 2013. 3D survey-
ing and modeling of the archaeological area of Paestum, Italy,
Virtual Archaeology Review
, 4:55–60.
Flener, C., M. Vaaja, A. Jaakkola, A. Krooks, H. Kaartinen, A. Kukko,
E. Kasvi, H. Hyyppä, J. Hyyppä, and P. Alho, 2013. Seamless
mapping of river channels at high resolution using mobile
LiDAR and UAV-photography,
Remote Sens
ing, 5:6382–6407.
FLIR, 2015. FLIR commercial systems - Infrared imaging
solutions for unmanned systems,
(last
date accessed: 20 February 2015).
Flynn, K.F. and S.C. Chapra, 2014. Remote sensing of submerged
aquatic vegetation in a shallow non-turbid river using an un-
manned aerial vehicle,
Remote Sens
ing, 6:12815–12836
Fornace, K.M., C.J. Drakeley, T. William, F. Espino, J. Cox, 2014.
Mapping infectious disease landscapes: Unmanned aerial ve-
hicles and epidemiology,
Trends in Parasitology
, 30(11):514–519.
Fowers, S.G., D.J. Lee, B.J. Tippetts, K.D. Lillywhite, A.D. Dennis,
and K. Archibald, 2007. Vision aided stabilization and the
development of a quad-rotor micro UAV,
Proceedings of the
IEEE International Symposium on Computational Intelligence in
Robotics and Automation
, pp. 143–148.
Franceschini, F., L. Mastrogiacomo, and B. Pralio, 2010. An un-
manned aerial vehicle-based system for large scale metrology
applications,
International Journal of Production Research
,
48(13):3867–3888.
Frankenberger, J.R., C. Huang, and K. Nouwakpo, 2008. Low-altitude
digital photogrammetry technique to assess ephemeral gully
erosion,
Proceedings of the IEEE International Geoscience and
Remote Sensing Symposium
(IGARSS 2008)
, 07-11 July 2008,
Boston, Massachusetts, IV:117–120.
Fra
ś
, S., K. J
ę
drasiak, J. Kwiatkowski, A. Nawrat, and D. Sobel, 2013.
Omnidirectional video acquisition device (OVAD),
Vision
Based Systems for UAV Applications
,
Studies in Computational
Intelligence
(A. Nawrat and Z. Kuś, editors), Springer
International Publishing: Switzerland, Vol. 481, pp. 123–126.
Fritz, A., T. Kattenborn, and B. Koch, 2013. UAV-based photo-
grammetric point clouds tree stem mapping in open stands
in comparison to terrestrial laser scanner point clouds,
The
International Archives of the Photogrammetry, Remote Sensing
and Spatial Information Sciences
, XL-1/W2:141–146.
Furfaro, R., B.D. Ganapol, L.F., Johnson, and S. Herwitz, 2005. Model-
based neural network algorithm for coffee ripeness prediction
using Helios UAV aerial images,
SPIE Proceedings of Remote
Sensing for Agriculture, Ecosystems and Hydrology
, Vol. 5976,
0X-1-59760X-11.
Gago, J., D. Douthe, I. Florez-Sarasa, J.M. Escalona, J. Galmes, A.R.
Fernie, J. Flexas, and H. Medrano, 2014. Opportunities for
improving leaf water use efficiency under climate change condi-
tions,
Plant Science
, 226:108–119.
Garcia-Ruiz, F., S. Sankaran, J.M. Maja, W.S. Lee, J. Rasmussen, and
R. Ehsani, 2013. Comparison of two aerial imaging platforms for
identification of Huanglongbing-infected citrus trees,
Computers
and Electronics in Agriculture
, 91:106–115.
GAU, 2014. Global airborne UAV remote sensing market 2014-
2018, 2014. 63 pages. URL:
com/reports/279533-global-airborne-uav-remote-sensing-
market-2014-2018.html
(last date accessed: 20 February 2015).
Gay, A., T. Stewart, R. Angel, M. Easey, A. Eves, N. Thomas, and A.
Kemp, 2009. Developing unmanned aerial vehicles for local and
flexible environmental and agricultural monitoring,
Proceedings
of the Remote Sensing and Photogrammetry Society Conference
(ISPRS), Leicester, UK, pp. 471–476.
Geipel, J., C. Knoth, O. Elsässer, and T. Prinz, 2011. DGPS and INS
based orthohotogrammetry on micro UAV platforms for preci-
sion farming services,
Proceedings of the Geoinformatics 2011
Conference
, 15–17 June, Münster, Germany, pp. 174–179.
Geipel, J., J. Link, and W. Claupein, 2014. Combined spectral and
spatial modeling of corn yield based on aerial images and crop
surface models acquired with an unmanned aircraft system,
Remote Sensing
, 6:10335–10355.
Geipel, J., G.G. Peteinatos, W. Claupein, and R. Gerhards, 2013.
Enhancement of micro unmanned aerial vehicles for agricultural
aerial sensor systems,
Proceedings of Precision Agriculture’13
(J.V. Stafford, editor), pp. 161-167.
Genchi, S.A., A.J. Vitale, G.M.E. Perillo, and C.A. Delrieux, 2015.
Structure-from-motion approach for characterization of bioero-
sion patterns using UAV imagery,
Sensors
, 15:3593–3609.
Gertler, J.U.S., 2012. Unmanned aerial systems - Congressional
Research Service, 03 January, URL:
natsec/R42136.pdf
(last date accessed: 07 February 2015).
Getzin, S., K. Wiegand, and I. Schöning, 2012. Assessing biodiversity
in forests using very high-resolution images and unmanned
aerial vehicles,
Methods in Ecology and Evolution
, 3:397-404.
Getzin, S., R.S. Nuske, and K. Wiegand, 2014. Using unmanned aerial
vehicles (UAV) to quantify spatial gap patterns in forests.
Remote
Sens
ing, 6:6988-7004.
Gini, R., D. Passoni, L. Pinto, and G. Sona, 2012. Aerial images
from a UAV system: 3D modelling and tree species classifica-
tion in a park area,
Proceedings of the
XXII ISPRS Congress -
International Archives of the Photogrammetry, Remote Sensing
and Spatial Information Sciences
, 25 August - 01 September,
Melbourne, Australia, Vol. XXXIX-B1, pp. 361–366.
Gini, R., D. Pagliari, D. Passoni, L. Pinto, G. Sona, and P. Dosso,
2013. UAV Photogrammetry: Block triangulation comparisons,
International Archives of the Photogrammetry, Remote Sensing
and Spatial Information Sciences
, 04 - 06 September, Rostock,
Germany, Vol. XL-1/W2, UAV-g2013, pp. 157-162.
Gleason, J., A.V. Nefian, X. Bouyssounousse, T. Fong, and G. Bebis,
2011. Vehicle detection from aerial imagery,
Proceedings of the
IEEE International Conference on Robotics and Automation
(ICRA)
, pp. 2065-2070.
Göktogan, A., S. Sukkarieh, M. Bryson, J. Randle, T. Lupton, and C.
Hung, 2010. A rotary-wing unmanned air vehicle for aquatic
weed surveillance and management,
Journal of Intelligent and
Robotic Systems
, 57:467–484.
Gómez-Candón, D., A.I. De Castro, and F. López-Granados, 2014.
Assessing the accuracy of mosaics from unmanned aerial vehicle
(UAV) imagery for precision agriculture purposes,
Precision
Agriculture
, 15:44-56.
Gonzalez-Dugo, V., P. Zarco-Tejada, E. Nicolás, P.A. Nortes, J.J.
Alarcón, D.S. Intrigliolo, and E. Fereres, 2013. Using high resolu-
tion UAV thermal imagery to assess the variability in the water
status of five fruit tree species within a commercial orchard,
Precision Agriculture
, 14(6):660-678.
PHOTOGRAMMETRIC ENGINEERING & REMOTE SENSING
April 2015
315
251...,305,306,307,308,309,310,311,312,313,314 316,317,318,319,320,321,322,323,324,325,...342
Powered by FlippingBook