and other growth periods. These findings may be useful for
satellite observations using canopy radiation sensors, un-
manned aerial system-based hyperspectral images, and cur-
rent and future satellite systems.
Acknowledgments
This research was supported by a grant from the National
Natural Science Foundation of China (No. 41762019, No.
41671348) and a grant from Xinjiang University Fund for
Distinguished Young Scholars (No. BS160232). We are also
thankful to the anonymous reviewers and the academic editor
whose pertinent comments have greatly improved the quality
of this paper.
References
Abduwasit G., L.I. Zhao-Liang, Q.M. et al. A method for canopy water
content estimation for highly vegetated surfaces-shortwave
infrared perpendicular water stress index. Sci. China
Science
in
China Series
D
-
Earth
Sciences
,
2007. 50(9):1359-1368.
Ashourloo, D., M.R. Mobasheri, and A. Huete (2014), Developing
two spectral disease indices for detection of wheat leaf rust
(Pucciniatriticina).
Remote Sensing
, 2014, 6(6):4723-4740.
Bannari, A., K.S. Khurshid, and K, Staenz et al.(2007), A
comparison of hyperspectral Chlorophyll indices for wheat
crop relative chlorophyll content estimation using laboratory
reflectance measurement,
IEEE Transactions on Geoscience &
Remote Sensing
, 2007, 45(10):3063-3074.
Baret, F., B. Andrieu, and G. Guyot, (1988). A simple model for leaf
optical properties in visible and near infrared: Application to
the analysis of spectral shifts determinism,
Applications of
Chlorophyll Fluorescence
, 1988:345-351.
Blackburn, G.A., (1998), Quantifying chlorophylls and caroteniods
at leaf and canopy scales: An evaluation of some hyperspectral
approaches, Remote Sensing of Environment, 66(3): 273-285.
Blackburn, G.A. (1998), Spectral indices for estimating photosynthetic
pigment concentrations: A test using senescent tree leaves,
International Journal of Remote Sensing
, 19(4):657- 675.
Carter, G.A., (1994). Ratios of leaf reflectances in narrow wavebands
as indicators of plant stress,
Remote Sensing
, 1994:15(3):697-
703.
Ceti̇n, O., N. Uzen, and M.G. Temi̇z, (2018). Effect of N-fertigation
frequency on the lint yield, chlorophyll, and photosynthesis
rate of cotton,
Journal of Agricultural Science & Technology
,
17(4):909-920.
Chappelle E.W., M.S. Kim and J.E., McMurtrey, (1992). Ratio analysis
of reflectance spectra (RARS): An algorithm for the remote
estimation of the concentrations of chlorophyll a, chlorophyll
b, and carotenoids in soybean leaves,
Remote Sensing of
Environment
, 39(3): 239-247.
Cho, M.A., A. Skidmore F. Corsi et al. (2007). Estimation of green
grass/herb biomass from airborne hyperspectral imagery
using spectral indices and partial least squares regression,
International Journal of Applied Earth Observations &
Geoinformation
, 9(4):414-424.
Croft, H., J.M. Chen Y. Zhang, (2014). The applicability of empirical
vegetation indices for determining leaf relative chlorophyll
content over different leaf and canopy structures,
Ecological
Complexity
, 17(1):119-130.
Dash, J., and P.J. Curran, (2000). The MERIS terrestrial chlorophyll
index,
Remote Sensing
, 25(23):5403-5413.
Daughtry, C.S.T, C.L. Walthall, M.S. Kim, et al. (2000). Estimating
corn leaf chlorophyll concentration from leaf and canopy
reflectance,
Remote Sensing of Environment
, 74(2):229-239.
Delalieux, S., A. Auwerkerken, W.W. Verstraeten, et al. (2009).
Hyperspectral reflectance and fluorescence imaging to detect
scab induced stress in apple leaves,
Remote Sensing
, 1(4):858-
874.
Elarab, M., A.M. Ticlavilca A F. Torres-Rua et al. (2015). Estimating
chlorophyll with thermal and broadband multispectral
high resolution imagery from an unmanned aerial system
using relevance vector machines for precision agriculture,
International Journal of Applied Earth Observations &
Geoinformation
, 43:32-42.
Krenchinski, F. H., V.J.S. Cesco, D.M. Rodrigues, et al. (2017). Yield
and physiological quality of wheat seeds after desiccation with
different herbicides,
Journal of Seed Science
, 39(3):254-261.
Fang, H., H.Y. Song, F. Cao, et al. (2007). Study on the relationship
between spectral properties of oilseed rape leaves and their
relative chlorophyll content,
Spectroscopy & Spectral Analysis
,
2007, 27(9):1731.
Fidahussein, M, Friedlin J, Grannis S. Comparison of Land-Cover
Classification Methods in the Brazilian Amazon Basin[J].
Photogrammetric Engineering & Remote Sensing, 2004,
70(6):723-732.
Filella, I., L. Serrano, J. Serra et al. (1995). Evaluating wheat nitrogen
status with canopy reflectance indices and discriminant analysis,
Crop Science
, 35(5):1400-1405.
Frampton, W. J., J. Dash, G. Watmough G, et al. (2013) Evaluating
the capabilities of Sentinel-2 for quantitative estimation
of biophysical variables in vegetation,
ISPRS Journal of
Photogrammetry and Remote Sensing
, 82: 83-92.
Gajjar, R. B., A.M. Shekh A J. Dave, et al. (2005). Assessment of crop
growth parameters of wheat under stress condition through
ground based spectral data,
Journal of the Indian Society of
Remote Sensing
, 2005. 33(1):147-153.
Gamon, J. A., J. Penuelas, and C.B. Field, (1992).A narrow-waveband
spectral index that tracks diurnal changes in photosynthetic
efficiency,
Remote Sensing of Environment
, 1992, 41(1):35-44.
Geladi, P., and B.R. Kowalski, (1986). Partial least-squares regression:
A tutorial,
Analytica Chimica Acta
, 185(86):1-17. (78).
Gitelson, A.A., Y. Gritz, and M.N. Merzlyak, (2003). Relationships
between leaf relative chlorophyll content and spectral
reflectance and algorithms for non-destructive chlorophyll
assessment in higher plant leaves, (2003).
Journal of Plant
Physiology
, 160(3):271.
Gitelson, A.A., Y.J. Kaufman, and M.N. Merzlyak, (1996). Use of a
green channel in remote sensing of global vegetation from EOS-
MODIS,
Remote Sensing of Environment
, 1996, 58(3):289-298.
Gitelson, A.A., and M.N. Merzlyak, (2004). Non-destructive
assessment of chlorophyll carotenoid and anthocyanin content
in higher plant leaves:
Principles and Algorithms
.
Gitelson, A.A., and M.N. Merzlyak, (1997). Remote estimation of
relative chlorophyll content in higher plant leaves,
International
Journal of Remote Sensing
, 18(12):2691-2697.
Gitelson A.A., A. Vina, V. Ciganda, et al. (2005). Remote estimation
of canopy relative chlorophyll content in crops,
Geophysical
Research Letters
, 32(8):93-114.
Gitelson, A.A., Y. Zur, O.B. Chivkunova, et al. (2002), Assessing
carotenoid content in plant leaves with reflectance spectroscopy,
Photochemistry & Photobiology
, 75(3):272.
Gitelson, A., and M.N. Merzlyak, (1994).
Quantitativeestimationofchlorophyll a using re ectance spectra:
Experiments with autumn chestnut and maple leaves,
Journal of
Photochemistry and Photobiology
, 22:247-252.
Guyot, G., F. Baret F, and D. Major, (1988). High spectral resolution:
Determination of spectral shifts between the red and the
near infrared, (1988). The
International
Archives of the
Photogrammetry
,
Remote Sensing
and Spatial Information
Sciences
, 11:750-760.
Haaland, D. M., and E.V. Thomas, (1988). Partial least-squares
methods for spectral analyses: 2. Application to simulated and
glass spectral data,
Analytical Chemistry
, 60(11):1202-1208.
Haboudane, D., J.R. Miller, E. Pattey, et al. (2004). Hyperspectral
vegetation indices and novel algorithms for predicting green
LAI of crop canopies: Modeling and validation in the context
of precision agriculture,
Remote Sensing of Environment
,
90(3):337-352.
810
December 2018
PHOTOGRAMMETRIC ENGINEERING & REMOTE SENSING