PE&RS November 2019 Full - page 851

References
Albalooshi, F. A., P. Sidike, V. Sagan, Y. Albastaki, and V. K. Asari.
2018. Deep Belief Active Contours (DBAC) with its application
to oil spill segmentation from remotely sensed sea surface
imagery., Photogrammetric Engineering & Remote Sensing, 84
(7): 451–-458.
Alhichri, H., Y. Bazi, N. Alajlan and N Ammour. 2015. A hierarchical
learning paradigm for semi-supervised classification of remote
sensing images. Pages 4388–4391in Proceedings of IGARSS..
Bigdeli, B., F. Samadzadegan and P. Reinartz. 2013. Band grouping
versus band clustering in
SVM
ensemble classification of
Hyperspectral Imagery . Photogrammetric Engineering & Remote
Sensing 79 (6):523–533.
Bruzzone, L., M. Chi and M. Marconcini. 2006. A novel transductive
SVM
for semisupervised classification of remote-sensing images.
IEEE Transactions on Geoscience and Remote Sensing 44:3363–
3373.
Chang, C.-C., and C.-J. Lin., 2011. LIBSVM: A library for support
vector machines., ACM Trans.actions on Intell.igent Syst.ems
Technol.ogy, vol. 2, no. (3):, p. 27, Apr. 2011.
Cheng, G., J. Han, L. Guo,
et al.
2015. Effective and efficient midlevel
visual elements-oriented land-use classification using VHR
remote sensing images. IEEE Transactions on Geoscience and
Remote Sensing 53:1–13.
Copa, L., D. Tuia and M. Volpi. 2010. Unbiased query-by-bagging
active learning for VHR image classification. Page 783 in
Proceedings of SPIE Europe Remote Sensing.
Crawford, M. M., D. Tuia and H. L. Yang. 2013. Active learning: Any
value for classification of remotely sensed data. Proceedings of
the IEEE, 101:593–608.
Cui, Y., X. Kai, and L., Zhongjun. 2018. Combination strategy of
active learning for hyperspectral images classification., Journal
on Communications, 39: 91–-99 .
Demir, B., C. Persello and L. Bruzzone. 2011. Batch-mode active-
learning methods for the interactive classification of remote
sensing images. IEEE Transactions on Geoscience and Remote
Sensing 49:1014–1031.
Di, W., and M. M. Crawford., 2011. Active learning via multi-view
and local proximity co-regularization for hyperspectral image
classification., IEEE Journal of Selected Topics in Signal
Processing. 5:18–-628.
Dopido, I., J. Li and A. Plaza. 2012. Semi-supervised active learning
for urban hyperspectral image classification. Pages 1586–1589 in
Proceedings of IGARSS.
Govender, M., K. Chetty and H. Bulcock. 200
hyperspectral remote sensing and its ap
and water resource studies. Water SA 33
Ham, J., Y. Chen, M. M. Crawford and J. Ghosh. 2005. Investigation of
the random forest framework for classification of hyperspectral
data. IEEE Transactions on Geoscience and Remote Sensing 43
(3):492–501.
Jackson, Q. and D. Landgrebe. 2001. An adaptive classifier design
for high-dimensional data analysis with a limited training data
set. IEEE Transactions on Geoscience and Remote Sensing 39
(12):2664–2679.
Ji, R., Y. Gao,
et al.
2014. Spectral-spatial constraint hyperspectral
image classification . IEEE Transactions on Geoscience and
Remote Sensing 3 (52):1811–1824.
Kang, X. S. Li, L. Fang,
et al.
2015. Extended random walker-based
classification of hyperspectral images. IEEE Transactions on
Geoscience and Remote Sensing 53:144–153.
Li, Y., X. Huang and H. Liu. 2017. Unsupervised deep feature learning
for urban village detection from high-resolution remote sensing
images. Photogrammetric Engineering & Remote Sensing 83
(8):567–579.
Mitra, P., B. U. Shankar and S. K. Pal. 2004. Segmentation of
multispectral remote sensing images using active support vector
machines. Pattern Recognition Letters 25:1067–1074.
Meng, X., and J. Bradley., 2017. Mllib: Machine learning in Apache
spark., The Journal of Machine Learning Research. 17:1235–-
1241.
Mountrakis, G., J. Im and C. Ogole. 2011. Support vector machines in
remote sensing: A review. ISPRS Journal Photogrammetry and
Remote Sensing 66:247–259.
Neuenschwander, A. L., M. M. Crawford and S. Ringrose. 2005.
Results from the EO-1 experiments comparative study of Earth
Observing-1 Advanced Land Imager (ALI) and Landsat ETM+
data for land cover mapping in the Okavango Delta, Botswana.
International Journal on Remote Sensing 26 (19):4321–4337.
Persello, C. and L. Bruzzone. 2014. Active and semisupervised
learning for the classification of remote sensing images. IEEE
Transactions on Geoscience and Remote Sensing 52:6937–6956.
Samadzadegan, F., H. Hasani and P. Reinartz. 2017. Toward
optimum fusion of thermal hyperspectral and visible images
in classification of urban area. Photogrammetric Engineering &
Remote Sensing 83 (4):269–280.
Samiappan, S., and R J. Moorhead., 2015. Semi-supervised co-
training and active learning framework for hyperspectral image
classification., IEEE International Geoscience and Remote
Sensing Symposium, held in Milan, Italy. IEEE.
Schohn, G. and D. Cohn., 2000. Less is more: Active learning with
support vector machines., Pages 839–846 in Proc.eedings of the
17th Int.ernational Conf.erence on Mach.ine Learn,ing 2000, pp.
839–846.
Settles, B. 2010. Active learning literature survey. University of
Wisconsin Madison 52.
Stein, B. R., B. J. Zheng, and I. Kikkinidis., 2013. An efficient remote
sensing solution to update the NCWI.[J], Photogrammetric
Engineering & Remote Sensing, 78 (6):537–-547.
Tu, E., J. Yang, J. Fang and Z. Jia. 2013. An experimental comparison
of semi-supervised learning algorithms for multispectral image
classification. Photogrammetric Engineering & Remote Sensing
79 (4):347–357.
Tuia, D., M. Volpi and L. Copa. 2011. A survey of active learning
rvised remote sensing image classification.
cted Topics in Signal Processing 5:606–617.
Li. 2015. Collaborative active and
ning for hyperspectral remote sensing image
classification. IEEE Transactions on Geoscience and Remote
Sensing 53:2384–2396.
Wang, Z., and J. Ye., 2015. Querying discriminative and
representative samples for batch mode active learning., ACM
Trans.actions on Knowl,edge Discovery Data. 9.
Wu, Z., B. Middleton and R. Hetzler. 2015. Vegetation burn severity
mapping using Landsat-8 and WorldView-2. Photogrammetric
Engineering & Remote Sensing 81 (2):143–154.
Yang, X. 2011. Parameterizing support vector machines for land cover
classification. Photogrammetric Engineering & Remote Sensing
77 (1):27–37.
Zhang, L., L. Zhang, D. Tao and X. Huang. 2013. Tensor
discriminative locality alignment for hyperspectral image
spectral–spatial feature extraction. IEEE Transactions on
Geoscience and Remote Sensing 51 (1):242–256.
PHOTOGRAMMETRIC ENGINEERING & REMOTE SENSING
November 2019
851
775...,841,842,843,844,845,846,847,848,849,850 852,853,854
Powered by FlippingBook