12-19 December Full - page 644

Dennison, P. E., K. Q. Halligan and D. A. Roberts. 2004. A comparison
of error metrics and constraints for multiple endmember spectral
mixture analysis and spectral angle mapper. Remote Sensing of
Environment 93 (3):359–367.
Dong, C., C. C. Loy, K. He and X. Tang. 2016. Image super-resolution
using deep convolutional networks. IEEE Transactions on
Pattern Analysis and Machine Intelligence 38 (2):295–307.
Du, Q., N. H. Younan, R. King and V. P. Shah. 2007. On the
performance evaluation of pan-sharpening techniques. IEEE
Geoscience and Remote Sensing Letters 4 (4):518–522.
Emelyanova, I. V., T. R. McVicar, T. G. Van Niel, L. T. Li and A. I. van
Dijk. 2013. Assessing the accuracy of blending Landsat–MODIS
surface reflectances in two landscapes with contrasting spatial
and temporal dynamics: A framework for algorithm selection.
Remote Sensing of Environment 133:193–209.
Gao, F., J. Masek, M. Schwaller and F. Hall. 2006. On the blending
of the Landsat and MODIS surface reflectance: Predicting daily
Landsat surface reflectance. IEEE Transactions on Geoscience
and Remote Sensing 44 (8):2207–2218.
Gevaert, C. M. and F. J. García-Haro. 2015. A comparison of STARFM
and an unmixing-based algorithm for Landsat and MODIS data
fusion. Remote Sensing of Environment 156:34–44.
Girshick, R., J. Donahue, T. Darrell and J. Malik. 2014. Rich
feature hierarchies for accurate object detection and semantic
segmentation. Pages 580–587 in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition.
Guenther, B., X. Xiong, V. Salomonson, W. Barnes and J. Young. 2002.
On-orbit performance of the earth observing system moderate
resolution imaging spectroradiometer; first year of data. Remote
Sensing of Environment 83 (1–2):16–30.
Hilker, T., M. A. Wulder, N. C. Coops, J. Linke, G. McDermid, J. G.
Masek, F. Gao and J. C. White. 2009. A new data fusion model
for high spatial-and temporal-resolution mapping of forest
disturbance based on Landsat and MODIS. Remote Sensing of
Environment 113 (8):1613–1627.
Huang, B. and H. Song. 2012. Spatiotemporal reflectance fusion via
sparse representation. IEEE Transactions on Geoscience and
Remote Sensing 50 (10):3707–3716.
Huang, B. and H. Zhang. 2014. Spatio-temporal reflectance fusion
via unmixing: Accounting for both phenological and land-cover
changes. International Journal of Remote Sensing 35 (16):6213–6233.
Kim, J., J. Kwon Lee and K. Mu Lee. 2016. Accurate image super-
resolution using very deep convolutional networks. Pages
1646–1654 in Proceedings of the IEEE C
Vision and Pattern Recognition.
Ledig, C., L. Theis, F. Huszár, J. Caballero, A.
Acosta, A. Aitken, A. Tejani, J. Totz and
realistic single image super-resolution using a generative
adversarial network. Pages 4681–4690 in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition.
Li, Z., W. Shi, P. Lu, L. Yan, Q. Wang and Z. Miao. 2016. Landslide
mapping from aerial photographs using change detection-based
Markov random field. Remote Sensing of Environment 187:76–90.
Nair, V. and G. E. Hinton. 2010. Rectified linear units improve restricted
Boltzmann machines. Pages 807–814 in Proceedings of the 27th
International Conference on Machine Learning (ICML-10).
Ren, S., K. He, R. Girshick and J. Sun. 2015. Faster R-CNN: Towards
real-time object detection with region proposal networks.
Advances in Neural Information Processing Systems 91–99.
Song, H. and B. Huang. 2013. Spatiotemporal satellite image
fusion through one-pair image learning. IEEE Transactions on
Geoscience and Remote Sensing 51 (4):1883–1896.
Song, H., Q. Liu, G. Wang, R. Hang and B. Huang. 2018.
Spatiotemporal satellite image fusion using deep convolutional
neural networks. IEEE Journal of Selected Topics in Applied
Earth Observations and Remote Sensing 11 (3):821–829.
Tan, Z., P. Yue, L. Di and J. Tang. 2018. Deriving high spatiotemporal
remote sensing images using deep convolutional network.
Remote Sensing 10 (7):1066.
Tong, T., G. Li, X. Liu and Q. Gao. 2017. Image super-resolution using
dense skip connections. Pages 4799–4807 in Proceedings of the
IEEE International Conference on Computer Vision.
Townshend, J., C. Justice, W. Li, C. Gurney and J. McManus. 1991.
Global land cover classification by remote sensing: Present
capabilities and future possibilities. Remote Sensing of
Environment 35 (2–3):243–255.
Vivone, G., L. Alparone, J. Chanussot, M. Dalla Mura, A. Garzelli,
G. A. Licciardi, R. Restaino and L. Wald. 2015. A critical
comparison among pansharpening algorithms. IEEE Transactions
on Geoscience and Remote Sensing 53 (5):2565–2586.
Vivone, G., R. Restaino and J. Chanussot. 2018. A regression-
based high-pass modulation pansharpening approach. IEEE
Transactions on Geoscience and Remote Sensing 56 (2):984–996.
Walker, J., K. De Beurs and R. Wynne. 2014. Dryland vegetation
phenology across an elevation gradient in Arizona, USA,
investigated with fused MODIS and Landsat data. Remote
Sensing of Environment 144:85–97.
Wang, F., M. Jiang, C. Qian, S. Yang, C. Li, H. Zhang, X. Wang and X.
Tang. 2017. Residual attention network for image classification.
Pages 3156–3164 in Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition.
Wang, Q. and P. M. Atkinson. 2018. Spatio-temporal fusion for daily
sentinel-2 images. Remote Sensing of Environment 204:31–42.
Wang, Z. and A. C. Bovik. 2002. A universal image quality index.
IEEE Signal Processing Letters 9 (3):81–84.
Wang, Z., A. C. Bovik, H. R. Sheikh and E. P. Simoncelli. 2004. Image
quality assessment: From error visibility to structural similarity.
IEEE Transactions on Image Processing 13 (4):600–612.
Xian, G. and M. Crane. 2005. Assessments of urban growth in the
Tampa Bay watershed using remote sensing data. Remote
Sensing of Environment 97 (2):203–215.
Xie, D., J. Zhang, X. Zhu, Y. Pan, H. Liu, Z. Yuan and Y. Yun. 2016.
An improved STARFM with help of an unmixing-based method
to generate high spatial and temporal resolution remote sensing
data in complex heterogeneous regions. Sensors 16 (2):207.
Zhang, K., W. Zuo, Y. Chen, D. Meng and L. Zhang. 2017. Beyond a
Gaussian denoiser: Residual learning of deep CNN for image
denoising. IEEE Transactions on Image Processing 26 (7):3142–3155.
Zhang, L., L. Zhang and B. Du. 2016. Deep learning for remote
sensing data: A technical tutorial on the state of the art. IEEE
Geoscience and Remote Sensing Magazine 4 (2):22–40.
Zhang, Y., Y. Tian, Y. Kong, B. Zhong and Y. Fu. 2018. Residual
dense network for image super-resolution. Pages 2472–2481 in
Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition.
. Song. 2018. A robust adaptive spatial and
on model for complex land surface changes.
nvironment 208:42–62.
ang and H. Zeng. 2016. Crop phenology
detection using high spatio-temporal resolution data fused from
spot5 and MODIS products. Sensors 16 (12):2099.
Zhu, X., F. Cai, J. Tian and T. Williams. 2018. Spatiotemporal fusion
of multisource remote sensing data: Literature survey, taxonomy,
principles, applications, and future directions. Remote Sensing
10 (4):527.
Zhu, X., J. Chen, F. Gao, X. Chen and J. G. Masek. 2010. An enhanced
spatial and temporal adaptive reflectance fusion model for
complex heterogeneous regions. Remote Sensing of Environment
114 (11):2610–2623.
Zhu, X., E. H. Helmer, F. Gao, D. Liu, J. Chen and M. A. Lefsky. 2016.
A flexible spatiotemporal method for fusing satellite images with
different resolutions. Remote Sensing of Environment 172:165–177.
Zhu, X. X., D. Tuia, L. Mou, G.-S. Xia, L. Zhang, F. Xu and F.
Fraundorfer. 2017. Deep learning in remote sensing: A
comprehensive review and list of resources. IEEE Geoscience
and Remote Sensing Magazine 5 (4):8–36.
Zhukov, B., D. Oertel, F. Lanzl and G. Reinhackel. 1999. Unmixing-
based multisensor multiresolution image fusion. IEEE Transactions
on Geoscience and Remote Sensing 37 (3):1212–1226.
Zurita-Milla, R., J. G. Clevers and M. E. Schaepman. 2008. Unmixing-
based Landsat TM and Meris FR data fusion. IEEE Geoscience
and Remote Sensing Letters 5 (3):453–457.
914
December 2019
PHOTOGRAMMETRIC ENGINEERING & REMOTE SENSING
581...,634,635,636,637,638,639,640,641,642,643 645,646,647,648
Powered by FlippingBook