Ling, X., Y. Zhang, J. Xiong, X. Huang and Z. Chen. 2016. An
image matching algorithm integrating global SRTM and image
segmentation for multi-source satellite imagery.
Remote Sensing
8 (8):672.
Lu, X., Y. Yuan and P. Yan. 2013. Image super-resolution via double
sparsity regularized manifold learning.
IEEE Transactions on
Circuits and Systems for Video Technology
23 (12):2022–2033.
Luo, Y., L. Zhou, S. Wang and Z. Wang. 2017. Video satellite imagery
super resolution via convolutional neural networks.
IEEE
Geoscience and Remote Sensing Letters
14:2398–2402.
Ma, Y., H. Wu, L. Wang, B. Huang, R. Ranjan, A. Zomaya and W.
Jie. 2015. Remote sensing big data computing: Challenges and
opportunities.
Future Generation Computer Systems
51:47–60.
Mao, X. J., C. Shen and Y. B. Yang. 2016. Image restoration using
convolutional auto-encoders with symmetric skip connections.
arXiv
preprint:
arXiv
1603.09056
.
Rottensteiner, F., J. Trinder, S. Clode and K. Kubik. 2005. Using the
Dempster–Shafer method for the fusion of LIDAR data and
multi-spectral images for building detection.
Information Fusion
6:283–300.
Sadeghi, Y., B. St-Onge, B. Leblon and M. Simard. 2016. Canopy
height model (CHM) derived from a TanDEM-X InSAR DSM and
an airborne Lidar DTM in Boreal forest.
IEEE Journal of Selected
Topics in Applied Earth Observations and Remote Sensing
9:381–397.
Schulter, S., C. Leistner and H. Bischof. 2015. Fast and accurate
image upscaling with super-resolution forests. Pages 3791–3799
in
Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition
.
Shen, H., X. Meng and L. Zhang. 2016. An integrated framework for
the spatio–temporal–spectral fusion of remote sensing images
.
IEEE Transactions on Geoscience and Remote Sensing
54:7135–
7148.
Song, H., Q. Liu, G. Wang, R. Hang and B. Huang. 2018.
Spatiotemporal satellite image fusion using deep convolutional
neural networks.
IEEE Journal of Selected Topics in Applied
Earth Observations and Remote Sensing
11:821–829.
Song, X., Y. Dai and X. Qin. 2016. Deep depth super-resolution:
Learning depth super-resolution using deep convolutional
neural network. Pages 360–375 in
Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition
.
Sun, J., Z. Xu and H.-Y. Shum. 2008. Image super-resolution using
gradient profile prior. Pages 1–8 in
Proceedings of the IEEE
Conference on Computer Vision and P
Tai, Y.-W., S. Liu, M. S. Brawn and S. Lin. 2
using edge prior and single image deta
2407 in
Proceedings of the IEEE Comp
on Computer Vision and Pattern Recognition
.
Taud, H., J. F. Parrot and R. Alvarez. 1999. Dem generation by contour
line dilation.
Computers & Geosciences
25 (7):775–783.
Vedaldi, A. and K. Lenc. 2015. MatConvNet: Convolutional neural
networks for MATLAB. Pages 689–692 in
Proceedings of the
23rd ACM International Conference on Multimedia—MM ’15
.
Wan, Y. and Y. Zhang. 2017. The P2L method of mismatch detection
for push broom high-resolution satellite images.
ISPRS Journal
of Photogrammetry and Remote Sensing
130:317–328.
Wang, Z., J. Chen and S. C. H. Hoi. 2019. Deep learning for image
super-resolution: A survey.
Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition.
Wen, Y., K. Zhang, Z. Li and Y. Qiao. 2016. A discriminative feature
learning approach for deep face recognition. Pages 499–515 in
Proceedings of the European Conference on Computer Vision
.
Xia, G.-S., X. Bai, X., J. Ding, J., Z. Zhu, Z., S. Belongie, S., J. Luo,
J., M. Datcu, M. Pelillo, M., &and L. Zhang., L. 2018. DOTA: A
large-scale dataset for object detection in aerial images. Pages
3974–3983 in
Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition
.
Xu, Z., X. Wang, Z. Chen, D. Xiong, M. Ding and W. Hou. 2015.
Nonlocal similarity based dem super resolution.
ISPRS Journal
of Photogrammetry and Remote Sensing
110(Complete):48–54.
Xu, Z., Z. Chen, W. Yi, Q. Gui, W. Hou, and M. Ding. 2019. Deep
gradient prior network for DEM super-resolution: Transfer
learning from image to DEM.
ISPRS Journal of Photogrammetry
and Remote Sensing
150:80–90.
Yan, W. Y., A. Shaker and N. El-Ashmawy. 2015. Urban land cover
classification using airborne LiDAR data: A review.
Remote
Sensing of Environment
158:295–310.
Yang, J., J. Wright, T. Huang and Y. Ma. 2008. Image super-resolution
as sparse representation of raw image patches. Pages 1–8 in
Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition
.
Yang, J., J. Wright, T. S. Huang and Y. Ma. 2010. Image super-
resolution via sparse representation.
IEEE Transactions on Image
Processing
19:2861–2873.
Zeng, K., J. Yu, R. Wang, C. Li and D. Tao. 2017. Coupled deep
autoencoder for single image super-resolution.
IEEE Transactions
on Cybernetics
47:27–37.
Zewei, H., T. Siliang, Y. Jiangxin, C. Yanlong, Y. M. Ying and C.
Yanpeng. 2018. Cascaded deep networks with multiple receptive
fields for infrared image super-resolution.
IEEE Transactions on
Circuits and Systems for Video Technology
1 (1).
Zhang, H., J. Yang, Y. Zhang and T. S. Huang. 2010. Non-local kernel
regression for image and video restoration. Pages 566–579 in
Proceedings of the European Conference on Computer Vision
.
Zhang, K., W. Zuo and L. Zhang. 2018. Learning a single
convolutional super resolution network for multiple
es 3262–3271 in
Proceedings of the IEEE
mputer Vision and Pattern Recognition
.
uang and X. Ling. 2016. DEM-assisted RFM
of pushbroom Nadir viewing HRS imagery.
IEEE Transactions on Geoscience and Remote Sensing
54:1025–
1034.
Zhang, Y., Y. Zhang, D. Mo, Y. Zhang and X. Li. 2017. Direct digital
surface model generation by semi-global vertical line locus
matching.
Remote Sensing
9 (3): 214.
Zhou, Q. and A. X. Zhu. 2013. The recent advancement in digital
terrain analysis and modeling.
International Journal of
Geographical Information Science
27 (7):1269–1271.
PHOTOGRAMMETRIC ENGINEERING & REMOTE SENSING
October 2019
775