Lu, Z., L. Chai, S. Liu, H. Cui, Y. Zhang, L. Jiang, R. Jin and Z. Xu.
2017. Estimating time series soil moisture by applying recurrent
nonlinear autoregressive neural networks to passive microwave
data over the Heihe River Basin, China.
Remote Sensing
9
(6):574.
Mao, K., J. Shi, Z. Li, Z. Qin, M. Li and B. Xu. 2007. A physics-based
statistical algorithm for retrieving land surface temperature from
AMSR-E passive microwave data.
Science in China Series D:
Earth Sciences
50 (7):1115–1120.
Nagarajan, K., J. Judge, W. D. Graham and A. Monsivais-Huertero.
2011. Particle filter-based assimilation algorithms for improved
estimation of root-zone soil moisture under dynamic vegetation
conditions.
Advances in Water Resources
34 (4):433–447.
Njoku, E. G. and L. Li. 1999. Retrieval of land surface parameters
using passive microwave measurements at 6–18 GHz.
IEEE
Transactions on Geoscience and Remote Sensing
37 (1):79–93.
O’Neill, P. E., R. H. Lang, M. Kurum, C. Utku and K. R. Carver. 2006.
Multi-sensor microwave soil moisture remote sensing: NASA’s
combined radar/radiometer (ComRAD) system. Pages 50–54 in
IEEE 2006 MicroRad
.
Oh, Y. 2004. Quantitative retrieval of soil moisture content and
surface roughness from multipolarized radar observations of
bare soil surfaces.
IEEE Transactions on Geoscience and Remote
Sensing
42 (3):596–601.
Oltra-Carrió, R., F. Baup, S. Fabre, R. Fieuzal and X. Briottet. 2015.
Improvement of soil moisture retrieval from hyperspectral VNIR-
SWIR data using clay content information: From laboratory to
field experiments.
Remote Sensing
7 (3):3184–3205.
Peng, Z., D. Jianli, W. Fei, G. Ubul and Z. Zhiguang. 2010. Retrieval
methods of soil water content in vegetation covering areas based
on multi-source remote sensing data.
Journal of Remote Sensing
14 (5):966–981.
Qin, J., S. Liang, K. Yang, I. Kaihotsu, R. Liu and T. Koike. 2009.
Simultaneous estimation of both soil moisture and model
parameters using particle filtering method through the
assimilation of microwave signal.
Journal of Geophysical
Research: Atmospheres
114(D15).
Rodríguez-Fernández, N. J., F. Aires, P. Richaume, Y. H. Kerr, C.
Prigent, J. Kolassa, F. Cabot, C. Jiménez, A. Mahmoodi and M.
Drusch. 2015. Soil moisture retrieval using neural networks:
Application to SMOS.
IEEE Transactions on Geoscience and
Remote Sensing
53 (11):5991–6007.
Rodríguez-Fernández, N. J., Y. H. Kerr, R. Van Der Schalie, A. Al-
Yaari, J.-P. Wigneron, R. De Jeu, P. Richaume, E. Dutra, A. Mialon
and M. Drusch. 2016. Long term global s
fields using an SMOS-trained neural net
data.
Remote Sensing
8 (11):959.
Salamon, P. and L. Feyen. 2009. Assessing pa
and predictive uncertainty in a distributed hydrological model
using sequential data assimilation with the particle filter.
Journal
of Hydrology
376 (3–4):428–442.
Santi, E., S. Paloscia, S. Pettinato and G. Fontanelli. 2016.
Application of artificial neural networks for the soil moisture
retrieval from active and passive microwave spaceborne
sensors.
International Journal of Applied Earth Observation and
Geoinformation
48:61–73.
Shi, J., L. Jiang, L. Zhang, K.-S. Chen, J.-P. Wigneron and A. Chanzy.
2005. A parameterized multifrequency-polarization surface
emission model.
IEEE Transactions on Geoscience and Remote
Sensing
43 (12):2831–2841.
Shi, J. C., J. Wang, A. Y. Hsu, P. E. O’Neill and E. T. Engman. 1997.
Estimation of bare surface soil moisture and surface roughness
parameter using L-band SAR image data.
IEEE Transactions on
Geoscience and Remote Sensing
35 (5):1254–1266.
Shi, Y. and R. C. Eberhart. 1999. Empirical study of particle swarm
optimization. Pages 1945–1950 in
Proceedings of the 1999
Congress on Evolutionary Computation, CEC 99.
Shi, Y. and R. C. Eberhart. 2001. Fuzzy adaptive particle swarm
optimization. Pages 101–106 in
Proceedings of the 2001
Congress on Evolutionary Computation
.
Trelea, I. C. 2003. The particle swarm optimization algorithm:
convergence analysis and parameter selection.
Information
Processing Letters
85 (6):317–325.
Ulaby, F. T., K. Sarabandi, K. Y. L. E. Mcdonald, M. Whitt and M. C.
Dobson. 1990. Michigan microwave canopy scattering model.
International Journal of Remote Sensing
11 (7):1223–1253.
Willmott, C. J. 1982. Some comments on the evaluation of model
performance.
Bulletin of the American Meteorological Society
63
(11):1309–1313.
Wu, T. D., K. S. Chen, J. C. Shi and A. K. Fung. 2001. A transition
model for the reflection coefficient in surface scattering.
IEEE
Transactions on Geoscience and Remote Sensing
39 (9):2040–
2050.
Yang, Q., H. Zuo and W. Li. 2016. Land surface model and particle
swarm optimization algorithm based on the model-optimization
method for improving soil moisture simulation in a semi-arid
region.
PloS One
11 (3):e0151576.
Yao, P., J. Shi, T. Zhao, H. Lu and A. Al-Yaari. 2017. Rebuilding
long time series global soil moisture products using the neural
network adopting the microwave vegetation index.
Remote
Sensing
9 (1):35.
Zhang, L., Q. Meng, S. Yao, Q. Wang, J. Zeng, S. Zhao and J. Ma.
2018. Soil moisture retrieval from the Chinese GF-3 satellite and
optical data over agricultural fields.
Sensors
18 (8):2675.
iu, V. Raghavan and X. Song. 2017. Soil
farmland using C-band SAR and optical
ation Research
25 (3):431–438.
e and C. Rüdiger. 2019. Roughness and
vegetation change detection: A pre-processing for soil moisture
retrieval from multi-temporal SAR imagery.
Remote Sensing of
Environment
225:93–106.
Zribi, M., O. Taconet, S. Le Hégarat-Mascle, D. Vidal-Madjar, C.
Emblanch, C. Loumagne and M. Normand. 1997. Backscattering
behavior and simulation comparison over bare soils using SIR-
C/X-SAR and ERASME 1994 data over Orgeval.
Remote Sensing
of Environment
59 (2):256–266.
798
November 2019
PHOTOGRAMMETRIC ENGINEERING & REMOTE SENSING