Peng, R.D., M.L. Bell, A.S. Geyh, A. McDermott, S.L. Zeger, J.M.
Samet, and F. Dominici, 2009. emergency admissions for
cardiovascular and respiratory diseases and the chemical
composition of fine particle air pollution,
Environmental Health
Perspectives,
117(6):957-963.
Pope, C.A., III, R.T. Burnett, M.C. Turner, A. Cohen, D. Krewski, M. Jerrett,
S.M. Gapstur, and M.J. Thun, 2011. Lung cancer and cardiovascular
disease mortality associated with ambient air pollution and
cigarette smoke: Shape of the exposure-response relationships,
Environmental Health Perspectives,
119(11):1616-1621.
Remer, L.A.,S. Mattoo, R.C. Levy, and L.A. Munchak, 2013. MODIS
3 km aerosol product: algorithm and global perspective,
Atmospheric Measurement Techniques
6(7):1829-1844.
Roza, A.D., 2010. Air pollution and visibility, URL:
wikia.com/wiki/Air_pollution_and_visibility
(last date accessed:
29 September 2018).
Shi, W., M.S. Wong, J. Wang, and Y. Zhao, 2012. Analysis of airborne
particulate matter (PM2.5) over Hong Kong using remote sensing
and GIS,
Sensors (Basel)
12(6):6825-6836.
Tai, P.K.A., 2012. Impact of climate change on fine particulate
matter PM2.5 air quality,
Atmospheric Chemistry and Physics
,
pp.11329-11337
Wang, J., and S. Ogawa, 2015. Effects of meteorological conditions on
PM2.5 concentrations in Nagasaki, Japan,
International Journal
of Environmental Research and Public Health
12(8):9089-9101.
Wang, Z., L. Chen, J. Tao, Y. Zhang, and L. Su, 2010. Satellite-
based estimation of regional particulate matter (PM) in Beijing
using vertical-and-RH correcting method,
Remote Sensing of
Environment
114(1):50-63.
Wu, B., R. Li, and B. Huang, 2014. A geographically and temporally
weighted autoregressive model with application to housing
prices,
International Journal of Geographical Information
Science
, 28(5):1186-1204.
Wu, J., F. Yao, W. Li, and M. Si, 2016. VIIRS-based remote sensing
estimation of ground-level PM 2.5 concentrations in Beijing–
Tianjin–Hebei: A spatiotemporal statistical model,
Remote
Sensing of Environment,
184:316-328.
Xie, Y., Y. Wang, K. Zhang, W. Dong, Lv, B., and Y. Bai, 2015. Daily
estimation of ground-level PM2.5 concentrations over Beijing
Using 3 km resolution MODIS AOD,
Environmental Science &
Technology
49(20):12280-12288.
Yap, X.Q., and M. Hashim, 2012. A robust calibration approach
for PM10 prediction from MODIS aerosol optical depth,
Atmospheric Chemistry and Physics Discussions
12(12):31483-
31505.
You, W., Z. Zang, L. Zhang, Y. Li, X. Pan, and W. Wang, 2016.
National-scale estimates of ground-level PM2.5 concentration in
China Using geographically weighted regression based on 3 km
resolution MODIS AOD,
Remote Sensing
, 8(3):184.
Zhan, Y., Y. Luo, X. Deng, H. Chen, M.L. Grieneisen, X. Shen, L.
Zhu, and M. Zhang, M. 2017. Spatiotemporal prediction of
continuous daily PM 2.5 concentrations across China using
a spatially explicit machine learning algorithm,
Atmospheric
Environment
, 155:129-139.
Zhang, Y.L., and F. Cao, 2015. Fine particulate matter (PM 2.5) in
China at a city level,
Scientific Reports
5:14884.
Zhao, X., X. Zhang, X. Xu, J. Xu, W. Meng, and W. Pu, 2009. Seasonal
and diurnal variations of ambient PM2.5 concentration in urban
and rural environments in Beijing,
Atmospheric Environment
43(18):2893-2900.
Zou, B., Q. Pu, M. Bilal, Q. Weng, L. Zhai, and J.E. Nichol, 2016.
High-Resolution satellite mapping of fine particulates based
on geographically weighted regression,
IEEE Geoscience and
Remote Sensing Letters,
13(4):495-499.
PHOTOGRAMMETRIC ENGINEERING & REMOTE SENSING
December 2018
769