PE&RS December 2018 Full - page 769

Peng, R.D., M.L. Bell, A.S. Geyh, A. McDermott, S.L. Zeger, J.M.
Samet, and F. Dominici, 2009. emergency admissions for
cardiovascular and respiratory diseases and the chemical
composition of fine particle air pollution,
Environmental Health
Perspectives,
117(6):957-963.
Pope, C.A., III, R.T. Burnett, M.C. Turner, A. Cohen, D. Krewski, M. Jerrett,
S.M. Gapstur, and M.J. Thun, 2011. Lung cancer and cardiovascular
disease mortality associated with ambient air pollution and
cigarette smoke: Shape of the exposure-response relationships,
Environmental Health Perspectives,
119(11):1616-1621.
Remer, L.A.,S. Mattoo, R.C. Levy, and L.A. Munchak, 2013. MODIS
3 km aerosol product: algorithm and global perspective,
Atmospheric Measurement Techniques
6(7):1829-1844.
Roza, A.D., 2010. Air pollution and visibility, URL:
wikia.com/wiki/Air_pollution_and_visibility
(last date accessed:
29 September 2018).
Shi, W., M.S. Wong, J. Wang, and Y. Zhao, 2012. Analysis of airborne
particulate matter (PM2.5) over Hong Kong using remote sensing
and GIS,
Sensors (Basel)
12(6):6825-6836.
Tai, P.K.A., 2012. Impact of climate change on fine particulate
matter PM2.5 air quality,
Atmospheric Chemistry and Physics
,
pp.11329-11337
Wang, J., and S. Ogawa, 2015. Effects of meteorological conditions on
PM2.5 concentrations in Nagasaki, Japan,
International Journal
of Environmental Research and Public Health
12(8):9089-9101.
Wang, Z., L. Chen, J. Tao, Y. Zhang, and L. Su, 2010. Satellite-
based estimation of regional particulate matter (PM) in Beijing
using vertical-and-RH correcting method,
Remote Sensing of
Environment
114(1):50-63.
Wu, B., R. Li, and B. Huang, 2014. A geographically and temporally
weighted autoregressive model with application to housing
prices,
International Journal of Geographical Information
Science
, 28(5):1186-1204.
Wu, J., F. Yao, W. Li, and M. Si, 2016. VIIRS-based remote sensing
estimation of ground-level PM 2.5 concentrations in Beijing–
Tianjin–Hebei: A spatiotemporal statistical model,
Remote
Sensing of Environment,
184:316-328.
Xie, Y., Y. Wang, K. Zhang, W. Dong, Lv, B., and Y. Bai, 2015. Daily
estimation of ground-level PM2.5 concentrations over Beijing
Using 3 km resolution MODIS AOD,
Environmental Science &
Technology
49(20):12280-12288.
Yap, X.Q., and M. Hashim, 2012. A robust calibration approach
for PM10 prediction from MODIS aerosol optical depth,
Atmospheric Chemistry and Physics Discussions
12(12):31483-
31505.
You, W., Z. Zang, L. Zhang, Y. Li, X. Pan, and W. Wang, 2016.
National-scale estimates of ground-level PM2.5 concentration in
China Using geographically weighted regression based on 3 km
resolution MODIS AOD,
Remote Sensing
, 8(3):184.
Zhan, Y., Y. Luo, X. Deng, H. Chen, M.L. Grieneisen, X. Shen, L.
Zhu, and M. Zhang, M. 2017. Spatiotemporal prediction of
continuous daily PM 2.5 concentrations across China using
a spatially explicit machine learning algorithm,
Atmospheric
Environment
, 155:129-139.
Zhang, Y.L., and F. Cao, 2015. Fine particulate matter (PM 2.5) in
China at a city level,
Scientific Reports
5:14884.
Zhao, X., X. Zhang, X. Xu, J. Xu, W. Meng, and W. Pu, 2009. Seasonal
and diurnal variations of ambient PM2.5 concentration in urban
and rural environments in Beijing,
Atmospheric Environment
43(18):2893-2900.
Zou, B., Q. Pu, M. Bilal, Q. Weng, L. Zhai, and J.E. Nichol, 2016.
High-Resolution satellite mapping of fine particulates based
on geographically weighted regression,
IEEE Geoscience and
Remote Sensing Letters,
13(4):495-499.
PHOTOGRAMMETRIC ENGINEERING & REMOTE SENSING
December 2018
769
743...,759,760,761,762,763,764,765,766,767,768 770,771,772,773,774,775,776,777,778,779,...814
Powered by FlippingBook