PE&RS July 2015 - page 585

over very large areas. Multiple compositing functions could
be used over different areas with spatial masks or ancillary
data used to determine the proper algorithm for each pixel.
For example, in agricultural areas, a maximum NDVI or other
spectral index-based function could be used while the current
algorithm retained in forested areas. Alternatively, those areas
with too few valid pixels to use the similarity approach could
use a different algorithm, while those areas with many valid
pixels the similarity approach may still be appropriate.
Acknowledgments
The authors would like to thank the
LANDFIRE
disturbance
mapping team for their help in developing and evaluating the
image products. We also thank the reviewers for their helpful
comments to improve this manuscript.
References
National Aeronautics and Space Administration, 2005.
Landsat 7
Science Data Users Handbook
, Goddard Space Flight Center,
Greenbelt, Maryland, pp. 186.
Alexandridis, T.K., I. Cherif, C. Kalogeropoulos, S. Monachou, K.
Eskridge, and N. Silleos, 2013. Rapid error assessment for
quantitative estimations from Landsat 7 gap-filled
images,
Remote Sensing Letters
, 4(9):920–928.
Aschbacher, J., and M.P. Milagro-Pérez, 2012. The European Earth
Monitoring (GMES) programme: Status and perspectives,
Remote
Sensing of Environment
, 120(1):3–8.
Boryan, C., Z. Yang, R. Mueller, and M. Craig, 2011. Monitoring
US agriculture: The US Department of Agriculture, National
Agricultural Statistics Service, Cropland Data Layer Program,
Geocarto International
, 26(5):341–358.
Chander, G., C. Huang, L. Yang, C. Homer, and C. Larson, 2009.
Developing consistent Landsat data sets for large area
applications: The MRLC 2001 Protocol,
IEEE Geoscience and
Remote Sensing Letters
, 6(4):777–781.
Deetz, C.H., and O.S. Adams, 1945.
Elements of Map Projection with
Applications to Map and Chart Construction
, U.S. Government
Printing Office, Special Publication Number 68, Fifth edition,
Revised, 1944, Washington, D.C., pp. 226.
Flood, N., 2013. Seasonal composite Landsat TM/ETM+ images using
the Medoid (a Multi-Dimensional Median),
Remote Sensing
,
5(12):6481–6500.
Fry, J.A., G. Xian, S. Jin, J.A. Dewitz, C.G. Homer, L. Yang, C.A.
Barnes, N.D. Herold, and
J.D. Wickham, 2011. Completion of
the 2006 national land cover database for the
conterminous
United States,
Photogrammetric Engineering & Remote Sensing
,
77(9):858–864.
Goward, S.N., J.G. Masek, W. Cohen, G. Moisen, G.J. Collatz, S.
Healey, R.A. Houghton, C. Huang, R. Kennedy, B. Law, S. Powell,
D. Turner, and M.A. Wulder, 2008. Forest disturbance and North
American carbon flux,
Eos
, 89(11):105–106.
Griffiths, P., S. Van Der Linden, T. Kuemmerle, and P. Hostert, 2013.
A pixel-based Landsat
compositing algorithm for large area land
cover mapping,
IEEE Journal of Selected Topics in Applied Earth
Observations and Remote Sensing
, 6(5):2088–2101.
Hansen, M.C., P.V. Potapov, R. Moore, M. Hancher, S.A. Turubanova,
A. Tyukavina, D. Thau, S.V. Stehman, S.J. Goetz, T.R. Loveland,
A. Kommareddy, A. Egorov, L. Chini, C.O. Justice, and J.R.G.
Townshend, 2013. High-resolution global maps of 21st-century
forest
cover change,
Science
, 342(6160):850–853.
Hansen, M.C., A. Egorov, P.V. Potapov, S.V. Stehman, A. Tyukavina,
S.A. Turubanova, D.P. Roy, S.J. Goetz, T.R. Loveland, J. Ju, A.
Kommareddy, V. Kovalskyy, C. Forsyth, and T. Bents, 2014.
Monitoring conterminous United States (CONUS) land cover
change with Web-Enabled Landsat Data (WELD),
Remote Sensing
of Environment
, 140(1):466–484.
Huang, C., S.N. Goward, J.G. Masek, F. Gao, E.F. Vermote, N. Thomas,
K. Schleeweis, R.E. Kennedy, Z. Zhu, J.C. Eidenshink, and
J.R.G. Townshend, 2009. Development of time
series stacks of
Landsat images for reconstructing forest disturbance history,
International Journal of Digital Earth
, 2(3):195–218.
Huang, C., S.N. Goward, J.G. Masek, N. Thomas, Z. Zhu, and J.E.
Vogelmann, 2010a. An
automated approach for reconstructing
recent forest disturbance history using dense Landsat time series
stacks,
Remote Sensing of Environment
, 114(1):183–198.
Huang, C., N. Thomas, S.N. Goward, J.G. Masek, Z. Zhu, J.R.G.
Townshend, and J.E. Vogelmann, 2010b. Automated masking of
cloud and cloud shadow for forest change analysis using Landsat
images,
International Journal of Remote Sensing
, 31(20):5449–5464.
Irish, R.R., J.L. Barker, S.N. Goward, and T. Arvidson, 2006.
Characterization of the Landsat-7 ETM+ automated cloud-cover
assessment (ACCA) algorithm,
Photogrammetric Engineering &
Remote Sensing
, 72(10):1179–1188.
Jin, S., L. Yang, P. Danielson, C. Homer, J. Fry, and G. Xian, 2013.
A comprehensive change detection method for updating the
National Land Cover Database to circa 2011,
Remote Sensing of
Environment
, 132(1):159–175.
Kennedy, R.E., Z. Yang, and W.B. Cohen, 2010. Detecting trends in
forest disturbance and
recovery using yearly Landsat time series:
1. LandTrendr - Temporal segmentation
algorithms,
Remote
Sensing of Environment
, 114(12):2897–2910.
Luo, Y., A.P. Trishchenko, and K.V. Khlopenkov, 2008. Developing
clear-sky, cloud and cloud
shadow mask for producing clear-sky
composites at 250-meter spatial resolution for the
seven MODIS
land bands over Canada and North America,
Remote Sensing of
Environment
, 112(12):4167–4185.
Maiersperger, T.K., P.L. Scaramuzza, L. Leigh, S. Shrestha, K.P. Gallo,
C.B. Jenkerson, and J.L. Dwyer, 2013. Characterizing LEDAPS
surface reflectance products by comparisons with AERONET,
field spectrometer, and MODIS data,
Remote Sensing of
Environment
, 136(1):1–13.
Masek, J.G., E.F. Vermote, N.E. Saleous, R. Wolfe, F.G. Hall, K.F.
Huemmrich, F. Gao, J. Kutler, and T.K. Lim, 2006. A Landsat
surface reflectance dataset for North America, 1990-2000,
IEEE
Geoscience and Remote Sensing Letters
, 3(1):68–72.
Nelson, K.J., J. Connot, B. Peterson, and C. Martin, 2013a. The
LANDFIRE refresh strategy: Updating the national dataset,
Fire
Ecology
, 9(2):80–101.
Nelson, K.J., J. Connot, B. Peterson, and J.J. Picotte, 2013b.
LANDFIRE 2010 - Updated data to
support wildfire and
ecological management,
Earthzine
, URL:
.
org/2013/09/15/landfire-2010-updated-data-to-support-wildfire-
and-ecological-management
(last date accessed: 13 May 2015).
Oreopoulos, L., M.J. Wilson, and T. Varnai, 2011. Implementation
on Landsat data of a Simple
cloud-mask algorithm developed
for MODIS land bands,
IEEE Geoscience and Remote Sensing
Letters
, 8(4):597–601.
Potapov, P., S. Turubanova, and M.C. Hansen, 2011. Regional-
scale boreal forest cover and
change mapping using Landsat
data composites for European Russia,
Remote Sensing of
Environment
, 115(2):548–561.
Potapov, P.V., S.A. Turubanova, M.C. Hansen, B. Adusei, M. Broich,
A. Altstatt, L. Mane, and C.O. Justice, 2012. Quantifying forest
cover loss in Democratic Republic of the Congo, 2000-2010,
with Landsat ETM+ data,
Remote Sensing of Environment
,
122(0):106–116.
Qian, G., S. Sural, Y. Gu, and S. Pramanik, 2004. Similarity between
Euclidean and cosine angle distance for nearest neighbor
queries,
Proceedings of the 2004 ACM symposium on Applied
Computing
, Nicosia, Cyprus, Association for Computing
Machinery, New York, pp. 1232–1237.
Rollins, M.G., 2009. LANDFIRE: A nationally consistent vegetation,
wildland fire, and fuel
assessment,
International Journal of
Wildland Fire
, 18(3):235–249.
PHOTOGRAMMETRIC ENGINEERING & REMOTE SENSING
July 2015
585
515...,575,576,577,578,579,580,581,582,583,584 586,587,588,589,590,591,592,593,594,595,...602
Powered by FlippingBook