PE&RS June 2016 Full - page 417

Hayes, M.M., S.N. Miller, and M.A. Murphy, 2014. High-resolution
landcover classification using Random Forest,
Remote Sensing
Letters
,
5
(2):112–121.
Ho, T.K., 1995. Random decision forests,
Proceedings of the
Third International Conference on Document Analysis and
Recognition
, 14-16vAugust, Montreal, Canada, pp. 278–282.
Ho, T.K., 1998. The random subspace method for constructing
decision forests,
IEEE Transactions on Pattern Analysis and
Machine Intelligence
, 20(8): 832–844.
Indurkhya, N., and S.M. Weiss, 1998. Estimating performance gains
for voted decision trees,
Intelligent Data Analysis
, 2(4):303–310.
Joelsson, S.R., J.A. Benediktsson, and J.R. Sveinsson, 2005. Random
forest classifiers for hyperspectral data,
Proceedings of the
IGARSS 2005: IEEE International Geoscience and Remote
Sensing Symposium
, 25-29 July, Seoul, Korea, Volumes 1-8,
pp.160-163.
Khalyani, A.H., M.J. Falkowski, and A.L. Mayer, 2012. Classification
of Landsat images based on spectral and topographic variables
for land-cover change detection in Zagros forests,
International
Journal of Remote Sensing
, 33(21):6956–6974.
Lawrence, R.L., S.D. Wood, and R.L. Sheley, 2006.Mapping invasive
plants using hyperspectral imagery and Breiman Cutler
classifications (Random Forest),
Remote Sensing of Environment
,
100(3):356–362.
Li, C., J. Wang, L. Wang, L. Hu, and P. Gong, 2014.Comparison of
classification algorithms and training sample sizes in urban land
classification with Landsat Thematic Mapper imagery,
Remote
Sensing
6(2):964–983.
Liaw, A., and M. Wiener, 2002. Classification and regression by
random forest,
R News
,
2
(3):18–22.
Liu, M., M. Wang, J.Wang, and D. Li, 2013. Comparison of random
forest, support vector machine and back propagation neural
network for electronic tongue data classification: Application to
the recognition of orange beverage and Chinese vinegar,
Sensors
and Actuators B: Chemical
, 177: 970–980.
Long, J.A., R.L. Lawrence, M.C. Greenwood, L. Marshall, and
P.R. Miller, 2013. Object-oriented crop classification using
multitemporal ETM+ SLC-off imagery and random forest,
GIScience and Remote Sensing
, 50(4):418–436.
Naidoo, L., M.A. Cho, R. Mathieu, and G. Asner, 2012. Classification
of savanna tree species, in the Greater Kruger National Park
region, by integrating hyperspectral and LiDAR data in a
Random Forest data mining environment, I
SPRS Journal of
Photogrammetry and Remote Sensing
, 69:167–179.
Pal, M., 2003. Random Forests for land cover classification,
Proceedings of the IGARSS 2003: IEEE International Geoscience
and Remote Sensing Symposium
, 21-25 July, Toulouse, France,
Volumes I-7, pp. 3510–3512.
Pal, M., 2005. Random forest classifier for remote sensing
classification,
International Journal of Remote Sensing
,
26(1):217–222.
Pontius, Jr., R.G., and M. Millones, 2011. Death to Kappa: Birth of
quantity disagreement and allocation disagreement for accuracy
assessment,
International Journal of Remote Sensing
, 32:4407–4429.
Puissant, A., S. Rougier, and A. Stumpf, 2014. Object-oriented
mapping of urban trees using random forest classifiers,
International Journal of Applied Earth Observation and
Geoinformation
, 26:235–245.
Reschke, J., and C. Hüttich, 2014.Continuous field mapping of
Mediterranean wetlands using sub-pixel spectral signatures and
multi-temporal Landsat data,
International Journal of Applied
Earth Observation and Geoinformation
, 28:220–229.
Richards, J.A., 1996. Classifier performance and map accuracy,
Remote Sensing of Environment,
57(3):161–166.
Rodriguez-Galiano, V., and M. Chica-Olmo, 2012. Land cover change
analysis of a Mediterranean area in Spain using different
sources of data: Multi-seasonal Landsat images, land surface
temperature, digital terrain models and texture,
Applied
Geography
, 35(1-2):208–218.
Rodriguez-Galiano, V.F., B. Ghimire, J. Rogan, M. Chica-Olmo, and
J.P. Rigol-Sanchez, 2012. An assessment of the effectiveness of
a random forest classifier for land-cover classification,
ISPRS
Journal of Photogrammetry and Remote Sensing
, 67:93–104.
Statnikov, A., L. Wang, and C.F. Aliferis, 2008.A comprehensive
comparison of random forests and support vector machines for
microarray-based cancer classification,
BMC Bioinformatics
,
9:319.
Steele, B.M., 2005. Maximum posterior probability estimators of map
accuracy,
Remote Sensing of Environment
, 99(3): 254–270.
Stehman, S.V., and G.M. Foody., 2009.
Accuracy Assessment, The
SAGE Handbook of Remote Sensing
(T.A.Warner, M. D.Nellis,
and G.M. Foody, editors), SAGE Publications Ltd, London, pp.
297–309.
Stumpf, A., and N. Kerle, 2011. Object-oriented mapping of
landslides using Random Forests,
Remote Sensing of
Environment
, 115(10):2564–2577.
Tang, Y., S. Krasser, Y. He, W. Yang, and D. Alperovitch, 2008.
Support vector machines and random forests modeling for
spam senders behavior analysis,
Proceedings of the Global
Communications Conference IEEE GLOBECOM 2008
, 30
November - 04 December New Orleans, Louisiana, pp. 1–5.
Watts, J.D., R. L. Lawrence, P.R. Miller, and C. Montagne, 2009.
Monitoring of cropland practices for carbon sequestration
purposes in north central Montana by Landsat remote sensing,
Remote Sensing of Environment
, 113(9):1843–1852.
Wolpert, D.H., and W.G. Macready, 1999. An efficient method to
estimate bagging’s generalization error,
Machine Learning
,
35(1):41–55.
Yang, X., 2011. Parameterizing support vector machines for land
cover classification,
Photogrammetric Engineering & Remote
Sensing
, 77(1): 27–37.
Zhong, L., P. Gong, and G.S. Biging, 2014. Efficient corn and soybean
mapping with temporal extendability: A multi-year experiment
using Landsat imagery,
Remote Sensing of Environment
,
140:1–13.
(Received 16 Janury 2015; accepted 07 January 2016; final
version 12 January 2016
PHOTOGRAMMETRIC ENGINEERING & REMOTE SENSING
June 2016
417
387...,407,408,409,410,411,412,413,414,415,416 418,419,420,421,422,423,424,425,426,427,...450
Powered by FlippingBook