PE&RS December 2018 Full - page 780

Acknowledgments
This work was supported by the National Natural Science
Foundation of China under Grant No.61771496; National Key
Research and Development Program of China under Grant
No.2017YFB0502900; Guangdong Provincial Natural Science
Foundation under Grant No.2016A030313254.
References
Adams, J.B., M.O. Smith, and A.R. Gillespie, 1993. Imaging
spectroscopy: Interpretation based on spectral mixture analysis,
Remote Geochemical Analysis: Elemental and Mineralogical
Composition
(Carli M. Pieters, Peter A.J. Englert, editors),
Cambridge University Press, Cambridge, UK, 7:145-166.
Arnold, Jr., C.L., and C.J. Gibbons, 1996. Impervious surface coverage:
The emergence of a key environmental indicator,
Journal of the
American Planning Association
, 62(2):243-258.
Arsanjani, J.J., M. Helbich, and M. Bakillah, 2013. Exploiting
volunteered geographic information to ease land use mapping of
an urban landscape,
Proceedings of the International Archives of
the Photogrammetry, Remote Sensing and Spatial Information
Sciences
, London, UK, pp. 29-31.
Bauer, M.E., N.J. Heinert, J.K. Doyle, and F. Yuan, 2004. Impervious
surface mapping and change monitoring using Landsat remote
sensing,
Proceedings of the ASPRS Annual Conference
, 18 - 23
May, Denver, Colorado (American Society for Photogrammetry
and Remote Sensing, Bethesda, Maryland), 4:2334-2336.
Brabec, E., S. Schulte, and P.L. Richards, 2002. Impervious
surfaces and water quality: A review of current literature and
its implications for watershed planning,
CPL Bibliography
,
16(4):499-514.
Dalla Mura, M., J.A. Benediktsson, B. Waske, and L. Bruzzone, 2010.
Morphological attribute profiles for the analysis of very high
resolution images,
IEEE Transactions on Geoscience and Remote
Sensing
, 48(10):3747-3762.
Deng, Y., F. Fan, and R. Chen, 2012. Extraction and analysis of
impervious surfaces based on a spectral un-mixing method using
Pearl River Delta of China Landsat TM/ETM+ imagery from 1998
to 2008,
Sensors
, 12(2):1846-1862.
Geiger, R., R.H. Aron, and P. Todhunter, 2009.
The Climate Near the
Ground
, Rowman & Littlefield, Lanham, Maryland, 642 p.
Hasse, J.E. and R.G. Lathrop, 2003. Land resource impact indicators
of urban sprawl,
Applied Geography
, 23(2):159-175.
Hu, T., J. Yang, X. Li, and P. Gong, 2016. Mapping urban land use by
using Landsat images and open social data,
Remote Sensing
,
8(2):151.
Huang, X., D. Wen, J. Li, and R. Qin, 2017. Multi-level monitoring of
subtle urban changes for the megacities of China using high-
resolution multi-view satellite imagery, Remote Sensing of
Environment, 196:56-75.
Jiang, S., A. Alves, F. Rodrigues, J. Ferreira, and F.C. Pereira,
2015. Mining point-of-interest data from social networks for
urban land use classification and disaggregation,
Computers,
Environment and Urban Systems
, 53:36-46.
Johnson, B.A., and K. Iizuka, 2016. Integrating OpenStreetMap
crowdsourced data and Landsat time-series imagery for rapid
land use/land cover (LULC) mapping: Case study of the Laguna
de Bay area of the Philippines,
Applied Geography
, 67:140-149.
Li, P., J. Guo, B. Song, and X. Xiao, 2011. A multilevel hierarchical
image segmentation method for urban impervious surface
mapping using very high resolution imagery, I
EEE Journal of
Selected Topics in Applied Earth Observations and Remote
Sensing
, 4(1):103-116.
Liu, C., Z. Shao, M. Chen, and H. Luo, 2013. MNDISI: A multi-source
composition index for impervious surface area estimation at the
individual city scale,
Remote Sensing Letters
, 4(8):803-812.
Liu, Y., X. Liu, S. Gao, L. Gong, C. Kang, Y. Zhi, G. Chi, and L. Shi,
2015. Social sensing: A new approach to understanding our
socioeconomic environments,
Annals of the Association of
American Geographers
, 105(3):512-530.
Lu, D., and Q. Weng, 2006. Use of impervious surface in urban land-use
classification,
Remote Sensing of Environment
, 102(1):146-160.
Lu, D., and Q. Weng, 2009. Extraction of urban impervious surfaces
from an IKONOS image,
International Journal of Remote
Sensing
, 30(5):1297-1311.
Lu, D., E. Moran, E., and S. Hetrick, 2011. Detection of impervious
surface change with multitemporal Landsat images in an urban-
rural frontier,
ISPRS Journal of Photogrammetry and Remote
Sensing
, 66(3):298-306.
Lu, Y., and Y. Liu, 2012. Pervasive location acquisition technologies:
Opportunities and challenges for geospatial studies,
Computers,
Environment and Urban Systems
, 36(2):105-108.
Markham, B.L., and J.L. Barker, 1987. Thematic Mapper bandpass
solar exoatmospheric irradiances,
International Journal of
Remote Sensing
, 8(3):517-523.
Meng, Y., D. Hou, and H Xing, 2017. Rapid detection of land cover
changes using crowdsourced geographic information: A case
study of Beijing, China,
Sustainability
, 9(9): 1547.
Møller-Jensen, L., 1990. Knowledge-based classification of an urban
area using texture and context information in Landsat-TM
imagery,
Photogrammetric Engineering & Remote Sensing
, pp.
899-904.
Rodrigues, F., F.C. Pereira, A. Alves, S. Jiang, and J. Ferreira, 2012.
Automatic classification of points-of-interest for land-use
analysis,
Proceedings of Fourth International Conference on
Advanced Geographic Information Systems, Applications, and
Services
, 30 January-04 February, Valencia, Spain, pp. 41-49.
Sawaya, K.E., L.G. Olmanson, N.J. Heinert, P.L. Brezonik, and M.E.
Bauer, M. E., 2003.
Extending satellite remote sensing to local scales: Land and water
resource monitoring using high-resolution imagery,
Remote
Sensing of Environment
, 88(1-2):144-156.
Schnebele, E., 2013. Improving remote sensing flood assessment
using volunteered geographical data,
Natural Hazards and Earth
System Sciences
, 13(3):669.
Schueler, T.R., 1994. The importance of imperviousness,
Watershed
Protection Techniques
, 1(3):100-111.
Silverman, B.W., 1986.
Density Estimation for Statistics and Data
Analysis
, 26, CRC Press, Boca Raton, Florida, 176 p.
Slonecker, E.T., D.B. Jennings, and D. Garofalo, 2001. Remote sensing
of impervious surfaces: A review,
Remote Sensing Reviews
,
20(3):227-255.
Weng, Q., 2012. Remote sensing of impervious surfaces in the urban
areas: Requirements, methods, and trends,
Remote Sensing of
Environment
, 117:34-49.
Wu, C., and Murray, A. T., 2003. Estimating impervious surface
distribution by spectral mixture analysis, Remote sensing of
Environment, 84(4): 493-505.
Yang, L., C. Huang, C.G. Homer, B.K. Wylie, and M.J. Coan, 2003.
An approach for mapping large-area impervious surfaces:
Synergistic use of Landsat-7 ETM+ and high spatial resolution
imagery,
Canadian Journal of Remote Sensing
, 29(2):230-240.
Yuan, F., and M.E. Bauer, 2007. Comparison of impervious surface
area and normalized difference vegetation index as indicators
of surface urban heat island effects in Landsat imagery,
Remote
sensing of Environment
, 106(3):375-386.
Yuan, J., Y. Zheng, and X. Xie, 2012. Discovering regions of different
functions in a city using human mobility and POIs,
ACM
, pp.
186-194.
Zhang, J., 2010. Multi-source remote sensing data fusion: Status and
trends,
International Journal of Image and Data Fusion
, 1(1):5-24.
Zhang, T., and X. Huang, 2018. Monitoring of urban impervious
surfaces using time series of high-resolution remote sensing
images in rapidly urbanized areas: A case study of Shenzhen,
IEEE Journal of Selected Topics in Applied Earth Observations
and Remote Sensing
, (99):1-17.
Zhu, C., J. Li, S. Zhang, C. Wu, B. Zhang, L. Gao, and A. Plaza, 2018.
Impervious surface extraction from multispectral images via
morphological attribute profiles based on spectral analysis,
IEEE
Journal of Selected Topics in Applied Earth Observations and
Remote Sensing
, Accepted, 2018.
780
December 2018
PHOTOGRAMMETRIC ENGINEERING & REMOTE SENSING
743...,770,771,772,773,774,775,776,777,778,779 781,782,783,784,785,786,787,788,789,790,...814
Powered by FlippingBook