Aytekin, Ö., and I. Ulusoy, 2011. Automatic segmentation of VHR
images using type information of local structures acquired by
mathematical morphology,
Pattern Recognition Letters
, 32:1618–
1625. doi: 10.1016/j.patrec.2011.06.024
Baatz, M., and A. Schäpe, 2000. Multiresolution segmentation:
An optimization approach for high quality multi-scale image
segmentation,
Angewandte Geographische Informations
verarbeitung XII
(J. Strobl, and T. Blaschke, editors.), Heidelberg:
Spinger-Verlag, pp. 12–23.
Belgiu M., and L. Drǎgut, 2014. Comparing supervised and
unsupervised multiresolution segmentation approaches for
extracting buildings from very high resolution imagery,
ISPRS
Journal of Photogrammetry and Remote Sensing
, 96:67-75. doi:
10.1016/j.isprsjprs.2014.07.002.
Benediktsson, J.A., M. Pesaresi, and K. Amason, 2003. Classification
and feature extraction for remote sensing images from
urban areas based on morphological transformations,
IEEE
Transactions on Geoscience and Remote Sensing
, 41:1940–1949.
doi: 10.1109/TGRS.2003.814625.
Benz, U.C., P. Hofman, G. Willhauck, I. Lingenfelder, andM. Heynen,
M., 2004. Multi-resolution object-oriented fuzzy analysis of
remote sensing data for GIS ready information,
ISPRS Journal
of Photogrammetry and Remote Sensing
, 58:239-258. doi:
10.1016/j.isprsjprs.2003.10.002.
Câmara, G., R.C.M. Souza, U.M. Freitas, and J. Garrido, 1996.
Spring: Integrating remote sensing and GIS by object-oriented
data modeling,
Computers & Graphics
, 20(3): 395–403. doi:
10.1016/0097-8493(96)00008-8.
Castilla, G., and G.J. Hay, 2007. Uncertainties in land use data,
Hydrology and Earth System Sciences Discussions
, European
Geosciences Union, 11(6):1857-1868.
hess-11-1857-2007.
Castilla, G., and G.J. Hay, 2008. Image objects and geographics objects,
Object-Based Image Analysis – Spatial Concepts for Knowledge-
Driven Remote Sensing Applications
(T. Blaschke, S. Lang, G.J.
Hay, editors), Heidelberg: Springer, Berlin, pp.91-110.
Castilla, G., A. Hernando, C. Zhang, and G.J. McDermid, 2014. The
impact of object size on the thematic accuracy of land cover
maps,
International Journal of Remote Sensing
, 35(3):1029-1037.
doi: 10.1080/01431161.2013.875630.
Castilla, G., A. Hernando, C. Zhang, and G. Mcdermid, 2012. An
integrated framework for assessing the accuracy of GEOBIA
landcover products,
Proceedings of the
4th
GEOBIA Conference
,
Rio de Janeiro - Brazil, 572-575. Available online: https://
_
framework_for_ass
essing the_accuracy_of_GEOBIA_
landcover_products (last date accessed: 04 September 2018).
Clinton N., and A. Holt, 2010. Accuracy assessment measures for
object-based Image segmentation goodness,
Photogrammetric
Engineering & Remote Sensing
, 76(3):289-299. doi: 10.14358/
PERS.76.3.289.
Comaniciu, D., V. Ramesh, and P. Meer, 2001. The variable bandwidth
mean shift and data-driven scale selection,
Proceedings of the
Eighth International Conference on Computer Vision
, Vol. I, pp.
438-445.
Definiens Image GmbH, 2007.
Definiens Developer 7-User Guide
.
Definiens Image GmbH, 2009.
Definiens eCognition Developer 8-User
Guide
.
Dr
ă
gu
ţ
, L., O. Csillika, C. Eisankb, D, Tiede, 2014. Automated
parameterisation for multi-scale image segmentation on multiple
layers,
ISPRS Journal of Photogrammetry and Remote Sensing
,
88:119–127. doi: 10.1016/j.isprsjprs.2013.11.018.
Dr
ǎ
gut, L., T, Dirk, and R.L. Shaun, 2010. ESP: A tool to estimate scale
parameter for multi resolution image segmentation of remotely
sensed data,
International Journal of Geographical Information
Science
, 24(6): 859-871. doi: 10.1080/13658810903174803.
Du, S., Z.Guo, W. Wang, 2016. A comparative study of the
segmentation of weighted aggregation and multiresolution
segmentation,
GIScience & Remote Sensing
, 53(5):651-670.
Eid, M.E., M.E. Khaled, and H.M. Onsi, 2010. A proposed multi-
scale approach with automatic scale selection for image change
detection,
The Egyptian Journal of Remote Sensing and Space
Sciences
, 13:1–10. doi: 10.1016/j.ejrs.2010.07.001.
Espindola, G., G. Camara, I. Reis, L. Bins, and A. Monteiro, 2006.
Parameter selection for region growing image segmentation
algorithms using spatial autocorrelation,
International
Journal of Remote Sensing
, 27(14):3035–3040. doi:
10.1080/01431160600617194.
Guo, Z., and S. Du, 2016. Mining parameter information for building
extraction and change detection with very high-resolution
imagery and GIS data,
GIScience & Remote Sensing
, 54(1):38-63.
Hay, G.J., G. Castilla, M.A. Wulder, and J.R. Ruiz, 2005. An automated
object-based approach for the multiscale image segmentation
of forest scenes, I
nternational Journal of Applied Earth
Observation and Geoinformation
, 7(4):339-359. doi: 10.1016/j.
jag.2005.06.005.
He, M., W. Zhang, and W. Wang, 2009. Optimal segmentation scale
model based on object-oriented analysis method,
Journal of
Geodesy and Geodynamics
, 29(1):106-109.
com/EN/Y2009/V29/I1/106.
Huang X., and L. Zhang, 2013. An SVM ensemble approach
combining spectral, structural, and semantic features for the
classification of high-resolution remotely sensed imagery,
IEEE
Transactions on Geoscience and Remote Sensing
, 51(1): 257-272.
doi: 10.1109/TGRS.2012.2202912.
Huang X., and L. Zhang, 2008. An adaptive mean-shift analysis
approach for object extraction and classification from urban
hyperspectral imagery,
IEEE Transactions on Geoscience
and Remote Sensing
, 46(12):4173-4185. doi: 10.1109/
TGRS.2008.2002577.
Huang X., Q. Lu, and L. Zhang, 2014. A multi-index learning
approach for classification of high-resolution remotely sensed
images over urban areas,
ISPRS Journal of Photogrammetry and
Remote Sensing
, 90: 36-48. doi:10.1016/j.isprsjprs.2014.01.008.
Huang X., D.Wen, J. Li, and R. Qin, 2017. Multi-level monitoring
of subtle urban dynamics for megacities of China using high-
resolution multi-view satellite imagery,
Remote Sensing of
Environment
, 196:56-75. doi: 10.1016/j.rse.2017.05.001.
Huang, X., H. Liu, and L. Zhang, 2015. Spatiotemporal detection and
analysis of urban villages in mega city regions of China using
high-resolution remotely sensed imagery,
IEEE Transactions on
Geoscience and Remote Sensing
, 53:3639–3657. doi: 10.1109/
TGRS.2014.2380779.
Huang, X., and L. Zhang, 2011. A multidirectional and multiscale
morphological index for automatic building extraction from
multispectral GeoEye-1 imagery,
Photogrammetric Engineering &
Remote Sensing
, 77(7):721–732. doi: 10.14358/PERS.77.7.721.
Huang, X.,and L. Zhang, 2012a. Morphological building/shadow
index for building extraction from high-resolution imagery over
urban areas,
IEEE Journal of Selected Topics in Applied Earth
Observations and Remote Sensing
, 5:161–172. doi: 10.1109/
JSTARS.2011.2168195.
Huang, X., and L. Zhang, 2012b. A multiscale urban complexity
index based on 3D wavelet transform for spectral-spatial feature
extraction and classification: an evaluation on the 8-channel
Worldview-2 imagery,
International Journal of Remote Sensing
,
33: 2641–2656. doi: 10.1080/01431161.2011.614287.
Ikokou, G.B., and J. Smit, 2013. A technique for optimal selection of
segmentation scale parameters for object-oriented classification
of urban scenes,
South African Journal of Geomatics
, 2(4):359-
369.
Johnson, B., and Z. Xie, 2011. Unsupervised image segmentation
evaluation and refinement using a multi-scale approach,
ISPRS
Journal of Photogrammetry and Remote Sensing
, 66:473–483.
doi: 10.1016/j.isprsjprs.2011.02.006.
Kim, M., M. Madden, and T. Warner, 2008. Estimation of optimal
image object size for the segmentation of forest stands with
Multi-spectral IKONOS imagery,
Object-Based Image Analysis-
Spatial Concepts for Knowledge Driven Remote Sensing
Applications
(T. Blaschke, S. Lang, G. and J. Hay, editors),
Heidelberg: Springer, pp.291-307. doi: 10.1007/978-3-540-77058-
9_16.
692
November 2018
PHOTOGRAMMETRIC ENGINEERING & REMOTE SENSING