PE&RS November 2018 Full - page 693

Li, M., L. Ma, T. Blaschke, L. Cheng, and D. Tiede, 2016. A
systematic comparison of different object-based classification
techniques using high spatial resolution imagery in agricultural
environments,
International Journal of Applied Earth
Observation and Geoinformation
, 49:87-98. doi: 10.1016/j.
jag.2016.01.011.
Li, P., and X. Xiao, 2007. Multispectral image segmentation by
a multichannel watershed-based approach,
International
Journal of Remote Sensing
, 28:4429-4452. doi:
10.1080/01431160601034910.
Li, Q., X. Huang, D. Wen, and H. Liu, 2017a. Integrating multiple
textural features for remote sensing image change detection,
Photogrammetric Engineering and Remote Sensing
, 83(2):109-
121. doi:10.14358/PERS.83.2.109.
Li, Y., X. Huang, and H. Liu, 2017b. Unsupervised deep feature
learning for urban village detection from high-resolution
remote sensing images,
Photogrammetric Engineering & Remote
Sensing
, 83(8):567-579. doi: 10.14358/PERS.83.8.567.
Liu, Y., L. Bian,and Y. Menga, 2012. Discrepancy measures for
selecting optimal combination of parameter values in object-
based image analysis,
ISPRS Journal of Photogrammetry
and Remote Sensing,
68:144–156. doi: 10.1016/j.
isprsjprs.2012.01.007.
Ming, D., T. Ci, H. Cai, L. Li, and C. Qiao, 2012. Semivariogram-
based spatial bandwidth selection for remote sensing image
segmentation with mean-shift algorithm,
IEEE Geoscience
and Remote Sensing Letters
, 9(5):813-817. doi: 10.1109/
LGRS.2011.2182604.
Ming, D., J. Li, J. Wang, and M. Zhang,2015. Scale parameter
selection by spatial statistics for GeOBIA: Using mean-shift
based multi-scale segmentation as an example,
ISPRS Journal of
Photogrammetry and Remote Sensing
, 106: 28-41. doi:10.1016/j.
isprsjprs.2015.04.010.
Ming, D., Q. Wang, and J. Luo, 2009. Evaluation of high spatial
resolution remote sensing image segmentation algorithms,
Proceedings of 2
nd
international congress on image and
signal processing
, Tianjin, China, 17-19 October. doi:10.1109/
CISP.2009.5305171.
Ming, D., X. Zhang, M. Wang, and W. Zhou, W., 2016. Cropland
extraction based on OBIA and adaptive scale pre-estimation,
Photogrammetric Engineering & Remote Sensing
, 82(8):635–644.
doi: 10.14358/PERS.82.8.635.
Radoux, J., and P. Defourny, 2007. A quantitative assessment of
boundaries in automated forest stand delineation using very high
resolution imagery,
Remote Sensing of Environment
, 110(4):468-
475. doi: 10.1016/j.rse.2013.10.030.
Radoux, J., and P. Bogaert, 2014. Accounting for the area of
polygon sampling units for the prediction of primary accuracy
assessment indices,
Remote Sensing of Environment
, 142:9-19.
doi: 10.1016/j.rse.2013.10.030.
Spiker, J.S., and T.A. Warner, 2007. Scale and Spatial autocorrelation
from a remote sensing perspective, geo-spatial technologies
in urban environments: Policy, practice and pixels (R. R.
Jensen, J.D. Gatrell, and D. McLean, editors), Basel: Springer
International Publishing AG, pp.197-213. doi: 10.1007/978-3-
540-69417-5_10.
Stehman, S.V., and J.D. Wickham, 2011. Pixels, blocks of pixels,
and polygons: Choosing a spatial unit for thematic accuracy
assessment,
Remote Sensing of Environment
, 115:3044–3055.
doi: 10.1016/j.rse.2011.06.007.
Tian, J., and D. Chen, 2007. Optimization in multi-scale segmentation
of high-resolution satellite images for artificial feature
recognition,
International Journal of Remote Sensing
, 28(20):
4625-4644. doi: 10.1080/01431160701241746.
Wang, M., and R. Li, 2014. Segmentation of high spatial resolution
remote sensing imagery based on hard-boundary constraint and
two-stage merging,
IEEE Transactions on
Geoscience and Remote Sensing
, 52(9):5712–5725.
Wang, M., Y. Sun, and G. Chen, 2015.Refining high spatial resolution
remote sensing image segmentation for man-made objects
through a collinear and ipsilateral neighborhood model,
Photogrammetric Engineering & Remote Sensing
, 81(5):397-406.
doi: 10.14358/PERS.81.5.397.
Wang, M., and J. Wang, 2016. A region-line primitive association
framework for object-based remote sensing image analysis,
Photogrammetric Engineering & Remote Sensing
, 82(2):149-159.
doi: 10.14358/PERS.82.2.149.
Warner, T.A., 2011. Kernel-based texture in remote sensing
image classification,
Geography Compass
, 5/10:781798. doi:
10.1111/j.1749-8198.2011.00451.x.
Yang, J., Y. He, J. Caspersun, and T. Jones, 2015a. A discrepancy
measure for segmentaion evaluation from the perspective
of object recognition,
ISPRS Journal of Photogrammetry
and Remote Sensing
, 101:186-192. doi: 10.1016/j.
isprsjprs.2014.12.015.
Yang, J., Y. He, and Q. Weng, 2015b. An automated method to
parameterize segmentation scale by enhancing intrasegment
homogeneity and intersegment heterogeneity,
IEEE Geoscience
and Remote Sensing Letters
, 12(6):1282-1286. doi: 10.1109/
LGRS.2015.2393255.
Zhang, H., J.E. Fritts, and S.A. Goldman, 2008. Image segmentation
evaluation: A survey of unsupervised methods,
Computer Vision
and Image Understanding
, 110(2):260–280. doi: 10.1016/j.
cviu.2007.08.003.
Zhang, X., and S. Du, 2016. Learning selfhood scales for urban land
cover mapping with very-high-resolution satellite images,
Remote Sensing of Environment, 178:172–190.
Zhang, X., X. Feng, P. Xiao, G. He, and L. Zhu, 2015b. Segmentation
quality evaluation using region-based precision and recall
measures for remote sensing images,
ISPRS Journal of
Photogrammetry and Remote Sensing
, 102:73-84. doi: 10.1016/j.
isprsjprs.2015.01.009.
Zhang, X., P. Xiao, X. Feng, L. Feng, and N. Ye, 2015a. Toward
evaluating multiscale segmentations of high spatial resolution
remote sensing images,
IEEE Transactions on Geosciences
and Remote Sensing
, 53(7): 3694-3706. doi: 10.1109/
TGRS.2014.2381632.
Zhao, M., F. Li, and G. Tang, 2012. Optimal scale selection for DEM
based slope segmentation in the Loess Plateau,
International
Journal of Geosciences
, 3:37-43. doi:10.4236/ijg.2012.31005.
PHOTOGRAMMETRIC ENGINEERING & REMOTE SENSING
November 2018
693
667...,683,684,685,686,687,688,689,690,691,692 694,695,696,697,698,699,700,701,702,703,...746
Powered by FlippingBook