PE&RS October 2018 Full - page 644

Acknowledgmentss
This work is supported by the National Natural Science Foun-
dation of China (41371347) and (41671369) and ‘‘the Funda-
mental Research Funds for the Central Universities’’.
References
Abdou, I.E. and W.K. Pratt, 1979. Quantitative design and evaluation
of enhancement/thresholding edge detectors,
Proceedings of the
IEEE
, 67(5):753-763.
Anders, N.S., A.C. Seijmonsbergen, and W. Bouten, 2011.
Segmentation optimization and stratified object-based analysis
for semi-automated geomorphological mapping,
Remote Sensing
of Environment
, 115(12):2976-2985.
Baatz, M., 2000. Multiresolution segmentation: An optimization
approach for high quality multi-scale image segmentation,
Angewandte Geographische Informationsverarbeitung
:12-23.
Belgiu, M., and L. Dr
ǎ
gu
ţ
, 2014. Comparing supervised and
unsupervised multiresolution segmentation approaches for
extracting buildings from very high resolution imagery,
ISPRS
Journal of Photogrammetry and Remote Sensing
, 96:67-75.
Benz, U.C., P. Hofmann, G. Willhauck, I. Lingenfelder, and M.
Heynen, 2004. Multi-resolution, object-oriented fuzzy analysis of
remote sensing data for GIS-ready information,
ISPRS Journal of
Photogrammetry and Remote Sensing
, 58(3):239-258.
Blaschke, T., 2001. What‘s wrong with pixels? Some recent
developments interfacing remote sensing and GIS,
GeoBIT/GIS
,
6:12-17.
Blaschke, T., S. Lang, and G. Hay, 2008. Object-based image
analysis: Spatial concepts for knowledge-driven remote sensing
applications,
IEEE Transactions on Geoscience and Remote
Sensing
, 65(1):2-16.
Blaschke, T., 2010. Object based image analysis for remote sensing,
ISPRS Journal of Photogrammetry and Remote Sensing
, 65(1):2-
16.
Blaschke, T., G.J. Hay, M. Kelly, S. Lang, P. Hofmann, E Addink, R.Q.
Feitosa, F. van der Meer, H. van der Werff, and F.van Coillie,
2014. Geographic object-based image analysis – Towards a
new paradigm,
ISPRS Journal of Photogrammetry and Remote
Sensing
, 87:180-191.
Borsotti, M., P. Campadelli, and R. Schettini, 1998. Quantitative
evaluation of color image segmentation results,
Pattern
Recognition Letters
, 19(8):741-747.
Bowyer, K.W., 2000. Validation of medical image analysis techniques,
Handbook of Medical Imaging
, 2:567-607.
Cánovas-García, F. and F. Alonso-Sarría, 2015. A local approach to
optimize the scale parameter in multiresolution segmentation for
multispectral imagery,
Geocarto International
, 30(8):937-961.
Cardoso, J.S., and L. Corte-Real, 2005. Toward a generic evaluation
of image segmentation,
IEEE Transactions on Image Processing
,
14(11):1773-1782.
Chabrier, S., B. Emile, C. Rosenberger, and H. Laurent, 2006.
Unsupervised performance evaluation of image segmentation,
EURASIP Journal on Applied Signal Processing
, 2006:217-217.
Chen, H.-C. and S.-J Wang, 2004. The use of visible color difference
in the quantitative evaluation of color image segmentation,
Proceedings of the 2004 IEEE International Conference on
Acoustics, Speech, and Signal Processing
, 17-21 May 2004,
Montreal, Quebec, Canada (IEEE Signal Processing Society), pp.
593-596.
Chen, Q., S. Chen, and C. Zhou, 2006. Segmentation approach for
remote sensing images based on local homogeneity gradient and
its evaluation,
Journal of Remote Sensing
, 10(3):357-365.
Cheng, J., Y. Bo, Y Zhu, and X. Ji, 2014. A novel method for assessing
the segmentation quality of high-spatial resolution remote-
sensing images,
International Journal of Remote Sensing
,
35(10):3816-3839.
Clinton, N., A. Holt, J. Scarborough, L. Yan, and P. Gong, 2010.
Accuracy assessment measures for object-based image
segmentation goodness,
Photogrammetric Engineering & Remote
Sensing
, 76(3):289-299.
Comaniciu, D., and P. Meer, 2002. Mean shift: A robust approach
toward feature space analysis,
IEEE Transactions on Pattern
Analysis and Machine Intelligence
, 24(5):603-619.
Corcoran, P., A. Winstanley, and P. Mooney, 2010. Segmentation
performance evaluation for object-based remotely sensed image
analysis,
International Journal of Remote Sensing
, 31(3):617-645.
de Graaf, C.N., A.S. Koster, K.L. Vincken, and M.A. Viergever, 1994.
Validation of the interleaved pyramid for the segmentation of 3D
vector images,
Pattern Recognition Letters
, 15(5):469-475.
Dorren, L.K., B. Maier, and A.C. Seijmonsbergen, 2003. Improved
Landsat-based forest mapping in steep mountainous terrain
using object-based classification,
Forest Ecology and
Management
, 183(1):31-46.
Dr
ǎ
gu
ţ
, L., D. Tiede, and S.R. Levick, 2010. ESP: A tool to estimate
scale parameter for multiresolution image segmentation of
remotely sensed data,
International Journal of Geographical
Information Science
, 24(6):859-871.
Dr
ǎ
gu
ţ
, L., O. Csillik, C. Eisank, and D. Tiede, 2014. Automated
parameterisation for multi-scale image segmentation on multiple
layers,
ISPRS Journal of Photogrammetry and Remote Sensing
,
88:119-127.
Dronova, I., P. Gong,N.E. Clinton, L. Wang, W. Fu, S. Qi, and Y. Liu,
2012. Landscape analysis of wetland plant functional types:
The effects of image segmentation scale, vegetation classes
and classification methods,
Remote Sensing of Environment
,
127:357-369.
Espindola, G., G. Câmara, I. Reis, L. Bins, and A. Monteiro, 2006.
Parameter selection for region‐growing image segmentation
algorithms using spatial autocorrelation,
International Journal of
Remote Sensing
, 27(14):3035-3040.
Estrada, F.J., and A.D. Jepson, 2005. Quantitative evaluation of a
novel image segmentation algorithm,
Proceedings of the 2005
IEEE Computer Society Conference on Computer Vision and
Pattern Recognition
, 20-26 June 2005, San Diego, California
(IEEE Computer Society), pp. 1132-1139.
Fotheringham, A.S., C. Brunsdon, and M. Charlton, 2000.
Quantitative Geography: Perspectives on Spatial Data Analysis,
Sage Publications, London, pp. 237-240 p.
Fram, J.R., and E.S. Deutsch, 1975. On the quantitative evaluation
of edge detection schemes and their comparison with human
performance,
IEEE Transactions on Computers
, 100(6):616-628.
Gelasca, E.D., T. Ebrahimi, M.C. Farias, M. Carli, and S.K. Mitra,
2005. Towards perceptually driven segmentation evaluation
metrics,
Proceedings of the 2004 Conference on Computer
Vision and Pattern Recognition Workshop
, 27 June-02 July 2004,
Washington, D.C. (IEEE Computer Society), pp. 52-52.
Gonzalez, R.C., and R.E. Woods, 1992.
Digital Image Processing,
Addison-wesley, Boston, Massechuttes, pp. 766-769.
Goodchild, M.F., M. Yuan, and T.J. Cova, 2007. Towards a general
theory of geographic representation in GIS,
International Journal
of Geographical Information Science
, 21(3):239-260.
Haralick, R.M., and L.G. Shapiro, 1985. Image segmentation
techniques,
Computer Vision, Graphics, and Image Processing
,
29(1):100-132.
Haralick, R.M., and L.G. Shapiro, 1992.
Computer and Robot Vision,
Addison-Wesley, Boston, Massechuttes, 509 p.
He, M., W. Zhang, and W. Wang, 2009. Optimal segmentation scale
model based on object-oriented analysis method,
Journal of
Geodesy and Geodynamics
, 29(1):022.
Hofmann, P., P. Lettmayer, T. Blaschke, M. Belgiu, S. Wegenkittl, R.
Graf, T.J. Lampoltshammer, and V. Andrejchenko, 2015. Towards
a framework for agent-based image analysis of remote-sensing
data,
International Journal of Image and Data Fusion
, 6(2):115-
137.
Hoover, A., G. Jean-Baptiste, X. Jiang, P.J. Flynn, H. Bunke, D.B.
Goldgof, K. Bowyer, D.W. Eggert, A. Fitzgibbon, and R.B. Fisher,
1996. An experimental comparison of range image segmentation
algorithms,
IEEE Transactions on Pattern Analysis and Machine
Intelligence
, 18(7):673-689.
Johnson, B., and Z. Xie, 2011. Unsupervised image segmentation
evaluation and refinement using a multi-scale approach,
ISPRS
Journal of Photogrammetry and Remote Sensing
, 66(4):473-483.
644
October 2018
PHOTOGRAMMETRIC ENGINEERING & REMOTE SENSING
591...,634,635,636,637,638,639,640,641,642,643 645,646,647,648,649,650,651,652,653,654,...670
Powered by FlippingBook