PE&RS October 2018 Full - page 646

Wang, Z., F. Meng, X. Yang, F. Yang, and Y. Fang, 2016. Study on
the automatic selection of segmentation scale parameters for
high spatial resolution remote sensing images,
Journal of Geo-
information Science
, 18(5):639-648.
Weidner, U., 2008. Contribution to the assessment of segmentation
quality for remote sensing applications,
International Archives
of Photogrammetry, Remote Sensing and Spatial Information
Sciences
, 37(B7):479-484.
Weszka, J.S., and A. Rosenfeld, 1978. Threshold evaluation
techniques,
IEEE Transactions on Systems, Man, and
Cybernetics
, 8(8):622-629.
Wong, A.K., and P.K. Sahoo, 1989. A gray-level threshold
selection method based on maximum entropy principle,
IEEE
Transactions on Systems, Man, and Cybernetics
, 19(4):866-871.
Woodcock, C.E., and A.H. Strahler, 1987. The factor of scale in remote
sensing,
Remote sensing of Environment
, 21(3):311-332.
Wulder, M., R. Hall, N. Coops, and S. Franklin, 2004. High spatial
resolution remotely-sensed data for the study of forest
ecosystems,
Bioscience
, 54:511-521.
Yang, J., P. Li, and Y. He, 2014. A multi-band approach to
unsupervised scale parameter selection for multi-scale image
segmentation,
ISPRS Journal of Photogrammetry and Remote
Sensing
, 94:13-24.
Yang, J., Y. He, J. Caspersen, and T. Jones, 2015a. A discrepancy
measure for segmentation evaluation from the perspective
of object recognition,
ISPRS Journal of Photogrammetry and
Remote Sensing
, 101:186-192.
Yang, J., Y. He, and Q. Weng, 2015b. An automated method to
parameterize segmentation scale by enhancing intrasegment
homogeneity and intersegment heterogeneity,
IEEE Geoscience
and Remote Sensing Letters
, 12(6):1282-1286.
Yang, L., F. Albregtsen, T. Lønnestad, and P. Grøttum, P., 1995. A
supervised approach to the evaluation of image segmentation
methods,
Proceedings of the Sixth International Conference on
Computer Analysis of Images and Patterns
, 06-08 September
1995, Prague, Czech Republic (Springer), pp. 759-765.
Yu, H., S. Zhang, B. Kong, and X. Li, 2010. Optimal segmentation
scale selection for object-oriented remote sensing image
classification,
Journal of Image and Graphics
, 15(2):352-360.
Yu, Q., P. Gong, N. Clinton, G. Biging, M. Kelly, and D. Schirokauer,
2006. Object-based detailed vegetation classification with
airborne high spatial resolution remote sensing imagery,
Photogrammetric Engineering & Remote Sensing
, 72(7):799-811.
Zéboudj, R., 1988.
Filtrage, seuillage automatique, contraste
et contours: du pré-traitement à l‘analyse d‘image
, Ph.D.
dissertation, Université de Saint-Etienne, Saint-Etienne,
Zhan, Q., M. Molenaar, K. Tempfli, and W. Shi, 2005. Quality
assessment for geo‐spatial objects derived from remotely sensed
data,
International Journal of Remote Sensing
, 26(14):2953-2974.
Zhang, H., J.E. Fritts, and S.A. Goldman, 2004. An entropy-based
objective evaluation method for image segmentation,
Storage
and Retrieval Methods and Applications for Multimedia
,
5307:38-49.
Zhang, H., J.E. Fritts, and S.A. Goldman, 2008. Image segmentation
evaluation: A survey of unsupervised methods,
Computer Vision
and Image Understanding
, 110(2):260-280.
Zhang, J., G.-L. Zhu, and F. Li, 2011. Scale effect and optimal scale in
object-oriented information extraction of high spatial resolution
remote sensing image,
Science of Surveying and Mapping
,
36(2):107-109.
Zhang, J., L. Zhang, and T. Xu, 2015a. Heterogeneity measure based
segmentation performance evaluation for remote sensing image,
Journal of Geomatics Science and Technology
, 32(5):479-482.
Zhang, Q., G. Pavlic, W., Chen, R. Fraser, S. Leblanc, and J. Cihlar,
J., 2005. A semi-automatic segmentation procedure for
feature extraction in remotely sensed imagery,
Computers &
Geosciences
, 31(3):289-296.
Zhang, S., J. Dong, and L. She, 2009. The methodology of evaluating
segmentation algorithms on medical image,
Journal of Image and
Graphics
, 14(9):1872-1880.
Zhang, X., X. Feng, P. Xiao, G. He, and L. Zhu, 2015b. Segmentation
quality evaluation using region-based precision and recall
measures for remote sensing images,
ISPRS Journal of
Photogrammetry and Remote Sensing
, 102:73-84.
Zhang, X., and D. Ming, 2015. Geo-application oriented evaluations
of remote sensing image segmentation,
Acta Geodaetica et
Cartographica Sinica
, 44(S0):108-116.
Zhang, X., P. Xiao, X. Feng, L. Feng, and N. Ye, 2015c. Toward
evaluating multiscale segmentations of high spatial resolution
remote sensing images,
IEEE Transactions on Geoscience and
Remote Sensing
, 53(7):3694-3706.
Zhang, Y., 1996a. A survey on evaluation methods for image
segmentation,
Pattern Recognition
, 29(8):1335-1346.
Zhang, Y., 1996b. A classification and comparison of evaluation
techniques for image segmentation,
China Journal of Image and
Graphics
, 1(2):151-158.
Zhang, Y., 2001. A review of recent evaluation methods for
image segmentation,
Proceedings of the Sixth International,
Symposium on Signal Processing and its Applications
, 13-
16 August 2001, Kuala Lumpur, Malaysia (Department of
Microelectronics and Computer Engineering), pp. 148-151.
Zhao, L., E. Chen, Z. Li, Q. Feng,L. Li, and H. Yang, 2015.
Segmentation of PolSAR data based on mean-shift and
spectral graph partitioning and its evaluation,
Geomatics and
Information Science of Wuhan University
, 40(8):1061-1068.
Zhao, M., F. Li, and G.A.Tang, 2012. Optimal scale selection for DEM
based slope segmentation in the loess plateau,
International
Journal of Geosciences
, 3(1):37.
646
October 2018
PHOTOGRAMMETRIC ENGINEERING & REMOTE SENSING
591...,636,637,638,639,640,641,642,643,644,645 647,648,649,650,651,652,653,654,655,656,...670
Powered by FlippingBook