The attitude coordinate reference system (
ARS
) locates at
OS. The origin of this system is reference point of navigation.
The x
a
-axis positive is in the direction of travel; z
a
-axis posi-
tive points along the normal of
OS
platform; y
a
-axis positive
completes a right-handed Cartesian system.
The celestial reference frame is a non-rotating coordinate
frame defined by appropriate celestial objects. The origin of
this system is the center of mass of the Earth. The x
c
-axis posi-
tive points to the vernal equinox at Julian epoch 2000; y
c
-axis
is in the equator and the z
c
-axis axis completes a right-handed
Cartesian system.
The terrestrial reference system is an Earth-fixed coordinate
frame, which is consistent with the WGS-84 coordinate system.
References
[1] Zhou, H., Y. Chen, J. Hyyppä, and S. Li, An overview of the
laser ranging method of spaceborne laser altimeter [J].
Infrared
Physics & Technology
, 2017,86:147-158.
[2] Bufton, J L. Laser altimetry measurements from aircraft and
spacecraft[J].
Proceedings of the IEEE
, 1989. 77(3):463-477.
[3] Schutz, B.E. Laser footprint location (geolocation) and surface
profiles[J]. Geoscience laser altimeter system (GLAS): Algorithm
theoretical basis document version, 2002, 3:11-19.
[4] Williams, K K, and M.T. Zuber, Measurement and analysis of
lunar basin depths from Clementine altimetry[J],
Icarus
, 1998.
131(1):107-122.
[5] Zuber, M.T., D.E. Smith, S.C. Solomon, The Mars Observer laser
altimeter investigation [J].
Journal of Geophysical Research
,
1992. 97(5):7781-7797.
[6] Gold R.E., S.C. Solomon, R.L. McNutt R. L. The MESSENGER
mission to Mercury: Scientific payload[J],
Planetary and Space
Science
, 2001. 49(14):1467-1479.
[7] Li, C.L., X. Ren J.J. Liu, et al. Laser altimetry data of Chang’E-1 and
the global lunar DEM model[J],
Science China Earth Sciences
,
2010. 53(11):1582-1593.
[8] Araki, H, S. Tazawa, H. Noda, et al. Lunar global shape and
polar topography derived from Kaguya-LALT laser altimetry[J],
Science, 2009. 323(5916):897-900.
[9] Smith, D.E., M.T. Zuber, Neumann G.A., et al. Initial observations
from the lunar orbiter laser altimeter (LOLA)[J],
Geophysical
Research Letters
, 2010:37(18).
[10] Gunderson, K., N. Thomas, and M. Rohner, A laser altimeter
performance model and its application to BELA[J],
IEEE
Transactions on Geoscience and Remote Sensing
, 2006.
44(11):3308-3319.
[11] Zwally, H. J., B. Schutz, W. Abdalati, et al. ICESat’s laser
measurements of polar ice, atmosphere, ocean, and land[J],
Journal of Geodynamics
, 2002. 34(3):405-445.
[12] Sun, X., J.B. Abshire, J.F. McGarry, et al. Space LiDAR developed
at the NASA Goddard Space Flight Center - The first 20 years[J],
IEEE Journal of Selected Topics in Applied Earth Observations
and Remote Sensing
, 2013, 6(3):1660-1675.
[13] Lefsky, M.A., D.J. Harding, M. Keller, et al., Estimates of forest
canopy height and aboveground biomass using ICESat[J],
Geophysical Research Letters
, 2005. 32(22).
[14] Urban, T.J., Schutz, B. E. Neuenschwander, A Survey of ICESat
coastal altimetry applications: Continental coast, Open Ocean
Island, and Inland River[J],
Terrestrial, Atmospheric & Oceanic
Sciences
, 2008. 19.
[15] Dessler, A. E., S.P. Palm, and J.D. Spinhirne, Tropical cloud-
top height distributions revealed by the ice, cloud, and land
elevation satellite (ICESat)/Geoscience laser altimeter system
(GLAS)[J], 111(D12).
[16] Filin, S., Calibration of spaceborne laser altimeters-an algorithm
and the site selection problem[J],
IEEE Transactions on
Geoscience and Remote Sensing
, 2006. 44(6):
1484-1492.
[17] Luthcke, S.B., Rowlands, D. D. McCarthy, et al. Spaceborne
laser-altimeter-pointing bias calibration from range residual
analysis[J],
Journal of Spacecraft and Rockets
, 2000. 37(3): 374-
384.
[18] Magruder, L., E. Silverberg C. Webb, et al., In situ timing and
pointing verification of the ICESat altimeter using a ground‐
based system[J],
Geophysical Research Letters
, 2005. 32(21).
[19] Magruder, L.A., C.E. Webb, T.J. Urban, et al., ICESat altimetry
data product verification at White Sands Space Harbor [J],
IEEE Transactions on Geoscience and Remote Sensing
, 2007.
45(1):147-155.
[20] Harding, D. J., J.L. Bufton, and J.J. Frawley, Satellite laser
altimetry of terrestrial topography: Vertical accuracy as a
function of surface slope, roughness, and cloud cover[J],
IEEE Transactions on Geoscience and Remote Sensing
, 1994.
32(2):329-339.
[21] Brenner, A.C., H.J. Zwally, C.R. Bentley et al., Derivation of range
and range distributions from laser pulse waveform analysis for
surface elevations, roughness, slope, and vegetation heights[J],
Algorithm Theoretical Basis Document
, 2003. 4:26-32.
[22] Triglav-Čekada, M., F. Crosilla, and M. Kosmatin-Fras, A
simplified analytical model for a-priori lidar point-positioning
error estimation and a review of lidar error sources[J],
Photogrammetric Engineering & Remote Sensing
, 2009.
75(12):1425-1439.
[23] Habib, A., K.I. Bang, A.P. Kersting, et al. Error budget of
lidar systems and quality control of the derived data[J],
Photogrammetric Engineering & Remote Sensing
, 2009.
75(9):1093-1108.
[24] McCarthy, D.D., IERS Conventions (1996), [J]
IERS Technical
Note
, 1996. 21:1-95.
[25] Ku, H.H., Notes on the use of propagation of error formulas[J],
Journal of Research of the National Bureau of Standards
, 1966.
70(4).
[26] Gardner, C.S., Ranging performance of satellite laser altimeters[J],
IEEE Transactions on Geoscience and Remote Sensing
, 1992.
30(5):1061-1072.
[27] Gardner, C.S., Target signatures for laser altimeters: An
analysis[J],
Applied Optics
, 1982. 21(3):448-453.
[28] Sun, X., J.B. Abshire, M.A. Krainak, et al. Cloud and aerosol
LiDAR channel design and performance of the Geoscience
Laser Altimeter System on the ICESat mission[C],
Conference
on Lasers and Electro-Optics. Optical Society of America
, 2004:
CThT16.
[29] Bae, S., B.E. Schutz, Geoscience Laser altimeter system (GLAS)
precision attitude determination[J],
Center for Space Research
,
The University of Texas at Austin, 2001.
[30] Rim, H. J., and B.E. Schutz, Precision orbit determination (POD)
[J],
Algorithm Theoretical Basis Document
, Center for Space
Research, The University of Texas at Austin, Austin, TX, 2002.
[31] Sirota, J.M., S. Bae, P. Millar, et al. The transmitter pointing
determination in the Geoscience Laser Altimeter System[J],
Geophysical Research Letters
, 2005. 32(22).
[32] Lee, J.E., The GLAS Standard Data Products Specification-Level
1/2 [R],
NASA Technical Report
, Goddard Space Flight Center,
2013.
[33] Harding, D.J., C.C. Carabajal, ICESat waveform measurements
of within‐footprint topographic relief and vegetation vertical
structure [J],
Geophysical Research Letters
, 2005. 32(21).
[34] Kriegel, H. P., P. Kröger, E. Schubert, and A. Zimek, A. LoOP:
local outlier probabilities [C].
Proceedings of the 18
th
ACM
Conference on Information and Knowledge Management.
ACM.
2009., pp. 1649-1652.
656
October 2018
PHOTOGRAMMETRIC ENGINEERING & REMOTE SENSING