Dalponte, M., H. O. Ørka, T. Gobakken, D. Gianelle and E. Næsset.
2013. Tree species classification in boreal forests with
hyperspectral data.
IEEE Transactions on Geoscience and
Remote Sensing
51 (5):2632–2645.
Fang, L., S. Li, X. Kang and J. A. Benediktsson. 2014. Spectral-spatial
hyperspectral image classi cation via multiscale adaptive sparse
representation.
IEEE Transactions on Geoscience and Remote
Sensing
52 (12):7738–7749.
Feng, R., Y. Zhong, L. Wang and W. Lin. 2017. Rolling guidance based
scale-aware spatial sparse unmixing for hyperspectral remote
sensing imagery.
Remote Sensing
9 (12):1218.
He, L., J. Li, C. Liu and S. Li. 2018. Recent advances on spectral-
spatial hyperspectral image classification: An overview and
new guidelines.
IEEE Transactions on Geoscience and Remote
Sensing
56 (3):1579–1597.
Hu, T., X. Huang, J. Li and L. Zhang. 2018. A novel co-training
approach for urban land cover mapping with unclear Landsat
time series imagery.
Remote Sensing of Environment
217:144–157.
Iordache, M.-D., J. M. Bioucas-Dias and A. Plaza. 2012. Total variation
spatial regularization for sparse hy
Transactions on Geoscience and Re
4502.
Jia, S., X. Zhang and Q. Li. 2015. Spectr
classi cation using
l
1/2
regularized
sparse representation-based graph cuts.
IEEE Journal of Selected
Topics in Applied Earth Observations and Remote Sensing
8
(6):2473–2484.
Lee, H., A. Battle, R. Raina and A. Y. Ng. 2007. Efficient sparse coding
algorithms. Pages 801–808 in
Advances in Neural Information
Processing Systems 19
, held in Vancouver, British Columbia,
December 2006. Edited by B. Schölkopf, J. C. Platt and T.
Hoffman. Cambridge, Mass.: MIT Press.
Li, J., H. Zhang, Y. Huang and L. Zhang. 2014. Hyperspectral image
classi cation by nonlocal joint collaborative representation with
a locally adaptive dictionary.
IEEE Transactions on Geoscience
and Remote Sensing
52 (6):3707–3719.
Li, W., C. Chen, H. Su and Q. Du. 2015. Local binary patterns
and extreme learning machine for hyperspectral imagery
classification.
IEEE Transactions on Geoscience and Remote
Sensing
53 (7):3681–3693.
Li, W. and Q. Du. 2014. Joint within-class collaborative representation
for hyperspectral image classification.
IEEE Journal of Selected
Topics in Applied Earth Observations and Remote Sensing
7
(6):2200–2208.
Li, W., Q. Du and M. Xiong. 2015. Kernel collaborative representation
with Tikhonov regularization for hyperspectral image
classification.
IEEE Geoscience and Remote Sensing Letters
12
(1):48–52.
Li, W., E. W. Tramel, S. Prasad and J. E. Fowler. 2014. Nearest
regularized subspace for hyperspectral classification.
IEEE
Transactions on Geoscience and Remote Sensing
52 (1):477–489.
Ma, L., M. M. Crawford and J. Tian. 2010. Local manifold learning-
based
k
-nearest neighbor for hyperspectral image classi cation.
IEEE Transactions on Geoscience and Remote Sensing
48
(11):4099–4109.
Melgani, F. and L. Bruzzone. 2004. Classification of hyperspectral
remote sensing images with support vector machines.
IEEE
Transactions on Geoscience and Remote Sensing
42 (8):1778–
1790.
Samaniego, L., A. Bárdossy and K. Schulz. 2008. Supervised
classification of remotely sensed imagery using a modified
k
-NN technique.
IEEE Transactions on Geoscience and Remote
Sensing
46 (7):2112–2125.
Stathakis, D. and A. Vasilakos. 2006. Comparison of computational
intelligence based classi cation techniques for remotely sensed
optical image classi cation.
IEEE Transactions on Geoscience
and Remote Sensing
44 (8):2305–2318.
Su, H., Y. Cai and Q. Du. 2017. Firefly-algorithm-inspired framework
with band selection and extreme learning machine for
hyperspectral image classification.
IEEE Journal of Selected
Topics in Applied Earth Observations and Remote Sensing
10
(1):309–320.
Sullivan, G. J. 1993. Multi-hypothesis motion compensation for low
bit-rate video coding. Pages 437–440 in
1993 IEEE International
, Speech, and Signal Processing, Vol.
inn., April 1993. Edited by J. Editors.
omputer Society.
2007. Signal recovery from random
onal matching pursuit.
IEEE
Transactions on Information Theory
53 (12):4655–4666.
Veganzones, M. A., G. Tochon, M. Dalla-Mura, A. J. Plaza and J.
Chanussot. 2014. Hyperspectral image segmentation using a new
spectral unmixing-based binary partition tree representation.
IEEE Transactions on Image Processing
23 (8):3574–3589.
Wright, J., A. Y. Yang, A. Ganesh, S. S. Sastry and Y. Ma. 2009. Robust
face recognition via sparse representation.
IEEE Transactions on
Pattern Analysis and Machine Intelligence
31 (2):210–227.
Zhang, H., J. Li, Y. Huang and L. Zhang. 2014. A nonlocal
weighted joint sparse representation classification method
for hyperspectral imagery.
IEEE Journal of Selected Topics in
Applied Earth Observations and Remote Sensing
7 (6):2056–
2065.
Zhang, L., M. Yang and X. Feng. 2011. Sparse representation or
collaborative representation: Which helps face recognition?
Pages 471–478 in
2011 International Conference on Computer
Vision
, held in Barcelona, Spain, November 2011. Edited by J.
Editors. City, St.: Publisher.
Zhang, X., C. Xu, M. Li and X. Sun. 2015. Sparse and low-
rank coupling image segmentation model via nonconvex
regularization.
International Journal of Pattern Recognition and
Artificial Intelligence
29 (2):1555004.
Zhao, B., L. Fei-Fei and E. P. Xing. 2011. Online detection of unusual
events in videos via dynamic sparse coding. Pages 3313–3320
in
2011 IEEE Conference on Computer Vision and Pattern
Recognition
, held in Colorado Springs, Colo., June 2011. Edited
by J. Editors. City, St.: Publisher.
Zhong, Y., R. Feng and L. Zhang. 2014. Non-local sparse unmixing for
hyperspectral remote sensing imagery.
IEEE Journal of Selected
Topics in Applied Earth Observations and Remote Sensing
7
(6):1889–1909.
672
September 2019
PHOTOGRAMMETRIC ENGINEERING & REMOTE SENSING