September 2019 Full - page 672

Dalponte, M., H. O. Ørka, T. Gobakken, D. Gianelle and E. Næsset.
2013. Tree species classification in boreal forests with
hyperspectral data.
IEEE Transactions on Geoscience and
Remote Sensing
51 (5):2632–2645.
Fang, L., S. Li, X. Kang and J. A. Benediktsson. 2014. Spectral-spatial
hyperspectral image classi cation via multiscale adaptive sparse
representation.
IEEE Transactions on Geoscience and Remote
Sensing
52 (12):7738–7749.
Feng, R., Y. Zhong, L. Wang and W. Lin. 2017. Rolling guidance based
scale-aware spatial sparse unmixing for hyperspectral remote
sensing imagery.
Remote Sensing
9 (12):1218.
He, L., J. Li, C. Liu and S. Li. 2018. Recent advances on spectral-
spatial hyperspectral image classification: An overview and
new guidelines.
IEEE Transactions on Geoscience and Remote
Sensing
56 (3):1579–1597.
Hu, T., X. Huang, J. Li and L. Zhang. 2018. A novel co-training
approach for urban land cover mapping with unclear Landsat
time series imagery.
Remote Sensing of Environment
217:144–157.
Iordache, M.-D., J. M. Bioucas-Dias and A. Plaza. 2012. Total variation
spatial regularization for sparse hy
Transactions on Geoscience and Re
4502.
Jia, S., X. Zhang and Q. Li. 2015. Spectr
classi cation using
l
1/2
regularized
sparse representation-based graph cuts.
IEEE Journal of Selected
Topics in Applied Earth Observations and Remote Sensing
8
(6):2473–2484.
Lee, H., A. Battle, R. Raina and A. Y. Ng. 2007. Efficient sparse coding
algorithms. Pages 801–808 in
Advances in Neural Information
Processing Systems 19
, held in Vancouver, British Columbia,
December 2006. Edited by B. Schölkopf, J. C. Platt and T.
Hoffman. Cambridge, Mass.: MIT Press.
Li, J., H. Zhang, Y. Huang and L. Zhang. 2014. Hyperspectral image
classi cation by nonlocal joint collaborative representation with
a locally adaptive dictionary.
IEEE Transactions on Geoscience
and Remote Sensing
52 (6):3707–3719.
Li, W., C. Chen, H. Su and Q. Du. 2015. Local binary patterns
and extreme learning machine for hyperspectral imagery
classification.
IEEE Transactions on Geoscience and Remote
Sensing
53 (7):3681–3693.
Li, W. and Q. Du. 2014. Joint within-class collaborative representation
for hyperspectral image classification.
IEEE Journal of Selected
Topics in Applied Earth Observations and Remote Sensing
7
(6):2200–2208.
Li, W., Q. Du and M. Xiong. 2015. Kernel collaborative representation
with Tikhonov regularization for hyperspectral image
classification.
IEEE Geoscience and Remote Sensing Letters
12
(1):48–52.
Li, W., E. W. Tramel, S. Prasad and J. E. Fowler. 2014. Nearest
regularized subspace for hyperspectral classification.
IEEE
Transactions on Geoscience and Remote Sensing
52 (1):477–489.
Ma, L., M. M. Crawford and J. Tian. 2010. Local manifold learning-
based
k
-nearest neighbor for hyperspectral image classi cation.
IEEE Transactions on Geoscience and Remote Sensing
48
(11):4099–4109.
Melgani, F. and L. Bruzzone. 2004. Classification of hyperspectral
remote sensing images with support vector machines.
IEEE
Transactions on Geoscience and Remote Sensing
42 (8):1778–
1790.
Samaniego, L., A. Bárdossy and K. Schulz. 2008. Supervised
classification of remotely sensed imagery using a modified
k
-NN technique.
IEEE Transactions on Geoscience and Remote
Sensing
46 (7):2112–2125.
Stathakis, D. and A. Vasilakos. 2006. Comparison of computational
intelligence based classi cation techniques for remotely sensed
optical image classi cation.
IEEE Transactions on Geoscience
and Remote Sensing
44 (8):2305–2318.
Su, H., Y. Cai and Q. Du. 2017. Firefly-algorithm-inspired framework
with band selection and extreme learning machine for
hyperspectral image classification.
IEEE Journal of Selected
Topics in Applied Earth Observations and Remote Sensing
10
(1):309–320.
Sullivan, G. J. 1993. Multi-hypothesis motion compensation for low
bit-rate video coding. Pages 437–440 in
1993 IEEE International
, Speech, and Signal Processing, Vol.
inn., April 1993. Edited by J. Editors.
omputer Society.
2007. Signal recovery from random
onal matching pursuit.
IEEE
Transactions on Information Theory
53 (12):4655–4666.
Veganzones, M. A., G. Tochon, M. Dalla-Mura, A. J. Plaza and J.
Chanussot. 2014. Hyperspectral image segmentation using a new
spectral unmixing-based binary partition tree representation.
IEEE Transactions on Image Processing
23 (8):3574–3589.
Wright, J., A. Y. Yang, A. Ganesh, S. S. Sastry and Y. Ma. 2009. Robust
face recognition via sparse representation.
IEEE Transactions on
Pattern Analysis and Machine Intelligence
31 (2):210–227.
Zhang, H., J. Li, Y. Huang and L. Zhang. 2014. A nonlocal
weighted joint sparse representation classification method
for hyperspectral imagery.
IEEE Journal of Selected Topics in
Applied Earth Observations and Remote Sensing
7 (6):2056–
2065.
Zhang, L., M. Yang and X. Feng. 2011. Sparse representation or
collaborative representation: Which helps face recognition?
Pages 471–478 in
2011 International Conference on Computer
Vision
, held in Barcelona, Spain, November 2011. Edited by J.
Editors. City, St.: Publisher.
Zhang, X., C. Xu, M. Li and X. Sun. 2015. Sparse and low-
rank coupling image segmentation model via nonconvex
regularization.
International Journal of Pattern Recognition and
Artificial Intelligence
29 (2):1555004.
Zhao, B., L. Fei-Fei and E. P. Xing. 2011. Online detection of unusual
events in videos via dynamic sparse coding. Pages 3313–3320
in
2011 IEEE Conference on Computer Vision and Pattern
Recognition
, held in Colorado Springs, Colo., June 2011. Edited
by J. Editors. City, St.: Publisher.
Zhong, Y., R. Feng and L. Zhang. 2014. Non-local sparse unmixing for
hyperspectral remote sensing imagery.
IEEE Journal of Selected
Topics in Applied Earth Observations and Remote Sensing
7
(6):1889–1909.
672
September 2019
PHOTOGRAMMETRIC ENGINEERING & REMOTE SENSING
611...,662,663,664,665,666,667,668,669,670,671 673,674,675,676,677,678,679,680,681,682,...702
Powered by FlippingBook