October 2019 Layout Flipping Full - page 749

Table 7. The evaluation indexes of comparing supervised algorithms and ours.
No.
MKL+GC
(Tao
et al.
2012a)
MMM
(Li
et al.
2017a)
VW (Weizman and
Goldberger 2009)
Deeplab v3+
(Chen
et al.
2018)
LMB-CNN +GC
(Tan
et al.
2019) ResNet +FCN
LMB-CNN +FCN
(Ours)
User.Acc
1
0.1723
0.4850
0.0610
0.7270
0.7939
0.7529
0.7640
2
0.1332
0.2937
0.0597
0.8777
0.7926
0.7412
0.8094
3
0.3570
0.7390
0.1588
0.6924
0.7764
0.7431
0.7830
4
0.3740
0.6177
0.1999
0.7054
0.7881
0.7405
0.7851
5
0.7494
0.9155
0.5055
0.9952
0.9244
0.9011
0.9186
6
0.4307
0.7437
0.2641
0.8298
0.8365
0.779
0.8299
7
0.2166
0.4779
0.0981
0.2298
0.8298
0.7849
0.8155
8
0.3390
0.8598
0.0597
0.1258
0.8308
0.7742
0.7052
9
0.3005
0.6682
0.2176
0.7492
0.7668
0.6616
0.7767
10
0.3717
0.7423
0.1554
0.7809
0.8136
0.7758
0.8086
All
0.3672
0.6866
0.1908
0.6713
0.8353
0.7853
0.8285
Prod.Acc
1
0.9199
0.9509
0.4344
0.7552
0.9222
0.9047
0.9387
2
0.9925
0.9107
0.4960
0.6734
0.8631
0.9085
0.8669
3
0.9977
0.9429
0.5059
0.8905
0.9680
0.9813
0.9694
4
0.9950
0.9551
0.4474
0.7771
0.9722
0.9816
0.9771
5
0.9803
0.9641
0.6692
0.8539
0.9916
0.9969
0.9904
6
0.9983
0.9550
0.5928
0.8931
0.9720
0.9841
0.9749
7
0.9961
0.9861
0.5795
0.3038
0.8429
0.9188
0.8429
8
0.9802
0.8895
0.5550
0.7558
0.9170
0.9659
0.9431
9
0.9988
0.9875
0.6461
0.9781
0.9899
0.9943
0.9879
10
0.9976
0.9480
0.5104
0.9325
0.9789
0.9914
0.9797
All
0.9879
0.9577
0.5788
0.7813
0.9670
0.9797
0.9691
Overall.Acc
1
0.7337
0.9373
0.5708
0.9687
0.9812
0.9768
0.9792
2
0.6472
0.8756
0.5464
0.9771
0.9802
0.9777
0.9816
3
0.8129
0.9594
0.6700
0.9475
0.9677
0.9628
0.9689
4
0.7309
0.8976
0.6224
0.9118
0.9534
0.9416
0.9532
5
0.8528
0.9471
0.5824
0.9363
0.9621
0.9523
0.9587
6
0.7998
0.9433
0.6880
0.9561
0.9670
0.9553
0.9659
7
0.7931
0.9374
0.6701
0.9017
0.9811
0.9809
0.9800
8
0.9261
0.9902
0.6484
0.7895
0.9897
0.9879
0.9827
9
0.6195
0.9177
0.5620
0.9429
0.9491
0.9158
0.9516
10
0.7838
0.9512
0.5821
0.9579
0.9686
0.9622
0.9677
All
0.7700
0.9357
0.6143
0.9290
0.9700
0.9613
0.9690
Mean IOU
1
0.4440
0.7034
0.2893
0.7778
0.8621
0.8365
0.8528
2
0.3801
0.5773
0.
8416
0.8331
0.8503
3
0.5740
0.8312
0.
8605
0.8457
0.8648
4
0.5264
0.7396
8578
0.8305
0.8577
5
0.7432
0.8979
9259
0.908
0.9197
6
0.5973
0.8261
0.3831
0.8520
0.8890
0.8584
0.8863
7
0.4985
0.7042
0.3320
0.5252
0.8494
0.8569
0.8434
8
0.6299
0.8833
0.3142
0.4521
0.8810
0.8705
0.8293
9
0.4228
0.7822
0.3297
0.8344
0.8500
0.7793
0.8558
10
0.5617
0.8288
0.3201
0.8456
0.8818
0.8636
0.8792
All
0.5502
0.7963
0.3418
0.7491
0.8888
0.8641
0.8858
Table 8. The time consumption of comparing supervised algorithms and ours (seconds).
MKL+GC
(Tao
et al.
2012a)
MMM
(Li
et al.
2017a)
VW (Weizman and
Goldberger 2009)
Deeplab v3+
(Chen
et al.
2018)
LMB-CNN +GC
(Tan
et al.
2019)
ResNet
+FCN
LMB-CNN
+FCN (Ours)
Average time
7877.3
628.8
186.2
16
4.0
2.7
3.0
Table 9. The basic information of the WorldView-3 images.
No.
Collection Time
Longitude and Latitude
Location
1
8 December 2014
E121.52°,S30.79°
Kalgoorlie, Australia
2
10 September 2014
E46.59°, S23.54°
São Paulo, Brazil
3
9 September 2014
E3.57°, N40.48º
Madrid, Spain
4
25 September 2014
E77.24°, N28.60°
New Delhi, India
PHOTOGRAMMETRIC ENGINEERING & REMOTE SENSING
October 2019
749
699...,739,740,741,742,743,744,745,746,747,748 750,751,752,753,754,755,756,757,758,759,...778
Powered by FlippingBook