Huang, X., L. Zhang, and T. Zhu, 2014. Building change detection
from multitemporal high-resolution remotely sensed images
based on a morphological building index,
IEEE Journal of
Selected Topics in Applied Earth Observations and Remote
Sensing
, 7(1):105–115.
IEEE Geoscience and Remote Sensing Society Image Analysis and
Data Fusion Technical Committee 2014 Data Fusion Contest:
Details of the Data Fusion Contest, URL:
unige.it/IPRS/IEEE_GRSS_IADFTC_2014_Data_Fusion_Contest.
htm
(last date accessed: 19 October 2015).
IEEE Geoscience and Remote Sensing Society Image Analysis and
Data Fusion (IADF) Technical Committee 2014 Data Fusion
Contest: Results, URL:
_
GRSS_IADFTC_2014_Classification_Contest_
Results.htm
(last date accessed: 19 October 2015).
Li, J., H. Zhang, and L. Zhang, 2014. Column-generation kernel
nonlocal joint collaborative representation for hyperspectral
image classification,
ISPRS Journal of Photogrammetry and
Remote Sensing
, 94(0):25–36.
Li, J., H. Zhang, and L. Zhang, 2014. Supervised segmentation of very
high resolution images by the use of extended morphological
attribute profiles and a sparse transform,
IEEE Geoscience and
Remote Sensing Letters
, 11(8):1409–1413.
Li, J., H. Zhang, L. Zhang, X. Huang, and L. Zhang, 2014. Joint
collaborative representation with multitask learning for
hyperspectral image classification,
IEEE Transactions on
Geoscience and Remote Sensing
, 52(9):5923–5936.
Maurya, R., Gupta, P.R. and Shukla A.S., 2011, Road extraction using
K-Means clustering and morphological operations,
Proceedings
of the International Conference on Image Information Processing
(ICIIP 2011)
, DOI:10.1109/ICIIP.2011.6108839.
Melgani, F., and L. Bruzzone, 2004. Classification of hyperspectral
remote sensing images with support vector machines,
IEEE Trans-
actions on Geoscience and Remote Sensing
, 42(8):1778–1790.
Miliaresis, G.C., 2014. Daily temperature oscillation enhancement
of multitemporal LST imagery,
Photogrammetric Engineering &
Remote Sensing
, 80(5):423–428.
Murphy, K.P., 2012.
Machine Learning: A Probabilistic Perspective
,
The MIT Press.
Richards, J.A., 1993.
Remote Sensing Digital Image Analysis
, Springer
Berlin Heidelberg.
Rodríguez-Galiano, V.F., B. Ghimire, E. Pardo-Igúzquiza, M. Chica-
Olmo, and R.G. Congalton, 2012. Incorporating the downscaled
Landsat TM thermal band in land-cover classification using
random forest,
Photogrammetric Engineering & Remote Sensing
,
78(2):129–137.
Sugg, Z.P., T. Finke, D.C. Goodrich, M.S. Moran, and S.R. Yool, 2014.
Mapping impervious surfaces using object-oriented classification
in a semiarid urban region,
Photogrammetric Engineering &
Remote Sensing
, 80(4):343–352.
Vapnik, V., 1999.
The Nature of Statistical Learning Theory
, Springer.
Yan, L., and X. Niu, 2014. Spectral-angle-based Laplacian eigenmaps
for nonlinear dimensionality reduction of hyperspectral imagery,
Photogrammetric Engineering & Remote Sensing
, 80(9):849-861.
Zhang, H., W. He, L. Zhang, H. Shen, and Q. Yuan, 2014.
Hyperspectral image restoration using low-rank matrix recovery,
IEEE Transactions on Geoscience and Remote Sensing
, 52(8):
4729-4743.
Zhang, H., L. Zhang, and H. Shen, 2012. A super-resolution
reconstruction algorithm for hyperspectral images,
Signal
Processing
, 92(9):2082–2096.
Zhu, X., and P. Milanfar, 2010. Automatic parameter selection for
denoising algorithms using a no-reference measure of image
content,
IEEE Transactions on Image Processing
, 19(12):3116–3132.
(Received 14 September 2014; accepted 02 April 2015; final
version 11 June 2015)
PHOTOGRAMMETRIC ENGINEERING & REMOTE SENSING
December 2015
911