PE&RS January 2018 Full - page 42

Heid, T., and A. Kääb, 2012. Evaluation of existing image matching
methods for deriving glacier surface displacements globally
from optical satellite imagery,
Remote Sensing of Environment
,
118:339–355.
Horn, B., and B. Schunck, 1981. Determining optical flow,
Artificial
Intelligence
, 17:185–203.
Howat, I.M., I. Joughin, and T.A. Scambos, 2007. Rapid changes
in ice discharge from Greenland outlet glaciers,
Science
,
315(5818):1559-1561. doi: 10.1126/science.1138478.
Kearney, J.K., W.B. Thompson, and D. Boley, 1987. Optical flow
estimation: An error analysis of gradient-based methods with
local optimization,
IEEE Transactions on Pattern Analysis and
Machine Intelligence
, PAMI-9(2):229-244.
Klette, R., 2014.
Concise Computer vision. An Introduction into
Theory and Algorithms
, Springer, New Zealand, 429 p.
Kneip, L., D. Scaramuzza, and R. Siegwart, 2011. A novel
parametrization of the perspective-three-point problem for a
direct computation of absolute camera position and orientation,
Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition (CVPR)
, June, pp. 2969–2976.
Lannutti, E., M.G. Lenzano, C. Toth, I. Lenzano, and A. Rivera, 2016.
Optical flow applied to time-lapse images series to estimate
glacier motion in the Southern Patagonia Icefield,
ISPRS-
International Archives of the Photogrammetry, Remote Sensing
and Spatial Information Sciences
, pp. 503–509.
Lenzano, M.G., E. Lannutti, C. Toth, L. Lenzano, and A. Lo Vecchio,
2014. Assessment of ice-dam collapse by time-lapse photos at the
Perito Moreno Glacier Argentina, International Archives of the
Photogrammetry, Remote Sensing and Spatial Information Sciences,
XL-1:11-217, URL:
-
XL-1-211-2014
(last date accessed: 29 November 2017.
Lichti, D.D., A. Habib, and I. Detchev, 2009. An object-space
simulation method for low-cost digital camera stability testing,
Photogrammetric Engineering & Remote Sensing
, 75(12):1407–1414.
Liu, C., 2009.
Beyond pixels: Exploring New Representations
and Applications for Motion Analysis
, PhD. dissertation,
Massachusetts Institute of Technology.
Liu, C., J. Yuen, and A. Torralba, 2011. Sift flow: Dense
correspondence across scenes and its applications,
IEEE
Transactions on Pattern Analysis and Machine Intelligence
,
33(5):978–994.
Lopez, P., P. Chevallier, V. Favier, B. Pouyaud, F. Ordenes, F., and
J. Oerlemans, 2010. A regional view of fluctuations in glacier
length in southern South America,
Global Planetary Change
,
71(1-2):85–108.
Lo Vecchio, A., M.G. Lenzano, M. Durand, E. Lannutti, L. Lenzano,
and R. Bruce, Estimation of speed motion and surface
temperature from optical satellite imagery at Viedma glacier,
Argentina,
Global and Planetary Change
, In review, 2017.
Maas, H.G., G. Casassa, D. Schneider, E. Schwalbe, and A. Wendt,
2010. Photogrammetric determination of spatio-temporal
velocity fields at Glaciar San Rafael in the Northern Patagonian
Icefield,
The Cryosphere Discussions
, 4:2415–2432.
Matías, J., S.J. Sanjosé, G. López-Nicolás, C. Sagüés, and J.J. Guerrero,
2009. Photogrammetric methodology for the production of
geomorphologic maps: Application to the Veleta Rock Glacier
(Sierra Nevada, Granada, Spain),
Remote Sensing
, 1:829–841,
doi:10.3390/rs1040829.
McCullagh, M.J., 1988. Terrain and surface modelling systems:
Theory and practice,
The Photogrammetric Record
, 12:747–79.
Mouginot, J., and E. Rignot, 2015. Ice motion of the Patagonian
icefields of South America: 1984-2014,
Geophysical Research
Letters
, 42:1441–1449.
Moustafa, A., 2000. Accuracy analysis for new close-range
photogrammetric systems,
The International Archives of the
Photogrammetry, Remote Sensing and Spatial Information
Sciences
, XXXIII, Part B5. Amsterdam, 2000.
Oerlemans, J., 2005. Extracting a climate signal from 169 glacier
records,
Science
, 308(5722):675–677.
Piermattei, L., L. Carturan, andA. Guarnieri, 2015. Use of terrestrial
photogrammetry based on structure from motion for mass
balance estimation of a small glacier in the Italian Alps,
Earth
Surface Processes and Landforms
, 40(13):1791–1802.
Rivera, A., M. Koppes, C. Bravo, and J.C. Aravena, 2012a. Little
Ice Age advance and retreat of Glaciar Jorge Montt, Chilean
Patagonia,
Climate of the Past
, 8:403–414.
Rivera, A., J. Corripio, C. Bravo, and S. Cisternas, 2012b. Glacier Jorge
Montt dynamics derived from photos obtained by fixed cameras
and satellite image feature tracking,
Annals of Glaciology
,
53(60):147–155.
Riveros, N., L. Euillades, P. Euillades, S. Moreiras, and S. Balbarani,
2013. Offset tracking procedure applied to high resolution
SAR data on discussions, Viedma Glacier, Patagonian Andes,
Argentina,
Advances in Geosciences
, 35:7–13.
Ryan, J.C., A.L. Hubbard, J.E. Box, J. Todd, P. Christoffersen, J.R., Carr,
and N.A. Snooke, 2015. UAV photogrammetry and structure
from motion to assess calving dynamics at Store Glacier, A large
outlet draining the Greenland ice sheet,
The Cryosphere
, 9:1–11.
Sakakibara, D., and S. Sugiyama, 2014. Ice-front variations and speed
changes of calving glaciers in the Southern Patagonia Icefield
from 1984 to 2011,
Journal of Geophysical Research: Earth
Surface
, 119, doi: 10.1002/2014JF003148.
Schalkoff, R.J., 1989.
Digital Image Processing and Computer Vision:
An Introduction to Theory and Implementations
, New York,
Wiley, pp. 489.
Schwalbe, E., R. Koschitzki, and H. Maas, 2016. Recognition of
drainage tunnels during glacier lake outburst events from
terrestrial image sequences,
The International Archives of the
Photogrammetry, Remote Sensing and Spatial Information
Sciences
, XLI-B8:537–543.
Szelisky, R., 2010. Computer vision: Algorithms and applications,
Springer Science and Business Media
, pp. 957.
Skvarca, P., H. Rott, and M. Stuefer, 1995. Synergy of ERS-1 SAR,
XSAR, Landsat TM imagery and aerial photography for
glaciological studies of Viedma Glacier, southern Patagonia,
Proceedings of the VII Simposio Latinoamericano de Percepcion
Remota
, SELPER, Puerto Vallarta, Mexico, pp.674–682.
Steinbrücker, F., T. Pock, and D. Cremers, 2009. Large displacement
optical flow computation without warping,
Proceedings of the
2009 IEEE 12
th
International Conference on Computer Vision
,
IEEE, pp.1609–1614.
Tistarelli. M., 1994. Multiple constraints for optical flow,
Proceedings
of the European Conference on Computer Vision
, May, Springer,
Berlin, Heidelberg, pp.61–70.
Toth, C., M.G. Lenzano, and L. Lannutti, 2016. Using optical flow to
estimate glacier displacements in the South Patagonia Icefield,
16-20 October,
Proceedings of the 37
th
Asian Conference on
Remote Sensing
, Colombo-Sri Lanka, unpaginated CD-ROM.
Toth, C., and G. Jóźków, 2016. Remote sensing platforms and sensors:
A survey,
ISPRS International Journal of Photogrammetry and
Remote Sensing
, 115:22–36.
Vogel, C., A. Bauder, and K. Schindler, 2012. Optical flow for glacier
motion estimation, July,
Proceedings of the 22
nd
ISPRS Congress,
Melbourne, Australia
(25).
Wedel, A., D. Cremers, T. Pock, and H. Bischof, 2009. Structure and
motion-adaptive regularization for high accuracy optic flow,
September,
Proceedings of the IEEE International Conference on
Computer Vision
, pp.1663–1668.
Weinzaepfel, P., J. Revaud, Z. Harchaqui, and C. Schmid, 2013.
Deepflow: Large displacement optical flow with deep matching,
Proceedings of the IEEE International Conference on Computer
Vision
.
Westoby, M.J., J. Brasington, N.F. Glasser, M.J. Hambrey, and J.M.
Reynolds, 2012. ‘Structure-from-Motion’ photogrammetry:
A low-cost, effective tool for geoscience applications,
Geomorphology
, 179:300–314.
Wiśniewski, B., K. Bruniecki, and M. Moszyński, 2013. Evaluation of
RTKLIB’s positioning accuracy using low-cost GNSS RECeiver
and ASG-EUPOS, Transnav,
The International Journal on Marine
Navigation and Safety of Sea Transportation
, 7(1):79–85.
Yilmaz, H.M., 2007. The effect of interpolation methods in surface
definition: An experimental study,
Earth Surface Processes and
Landforms
, 32:1346–1361.
42
January 2018
PHOTOGRAMMETRIC ENGINEERING & REMOTE SENSING
I...,32,33,34,35,36,37,38,39,40,41 43,44,45,46,47,48,49,50,51,52,...54
Powered by FlippingBook