reasonable computational time. We have validated both the
segmentation and the disocclusion methods by visual inspec-
tion as well as quantitative analysis against ground truth, and
we have proved their effectiveness in terms of accuracy.
In the future, we will focus on extending the methodology
to other point cloud processing tasks such as LiDAR point
cloud colorization / registration using range images and opti-
cal images through variational models.
Acknowledgments
J-F. Aujol is a member of Institut Universitaire de France. This
work was funded by the ANR GOTMI (ANR-16-CE33-0010-01)
grant. We would like to thank the anonymous reviewer for
his/her useful comments.
References
Achanta, R., A. Shaji, K. Smith, A. Lucchi, P. Fua, and S. Süsstrunk,
2012. SLIC superpixels compared to state-of-the-art superpixel
methods,
IEEE Transactions on Pattern Analysis and Machine
Intelligence
, 34(11):2274–2282.
Becker, J., C. Stewart, and R.J. Radke, 2009. LiDAR inpainting from a
single image,
Proceedings of the IEEE International Conference
on Computer Vision
, Vol. 1. pp. 1441–1448.
Bertalmio, M., G. Sapiro, V. Caselles, and C. Ballester, 2000. Image
inpainting,
ACM Computer Graphics and Interactive Techniques
,
Vol. 1. pp. 417–424.
Bevilacqua, M., J.-F. Aujol, P. Biasutti, M. Brédif, and A. Bugeau,
2017. Joint inpainting of depth and reflectance with visibility
estimation,
ISPRS Journal of Photogrammetry and Remote
Sensing
, 125:16–32.
Biasutti, P., J.-F. Aujol, M. Brédif, and A. Bugeau, 2017. Disocclusion
of 3D LiDAR point clouds using range images,
ISPRS Annals of
the Photogrammetry, Remote Sensing and Spatial Information
Sciences
, 4(1): 75–82.
Bredies, K., K. Kunisch, and T. Pock, 2010. Total generalized
variation,
SIAM Journal on Mathematical Analysis
, 3:492–526.
Buyssens, P., M. Daisy, D. Tschumperlé, and O. Lézoray, 2015a. Depth-
aware patch-based image disocclusion for virtual view synthesis,
Proceedings of SIGGRAPH Asia Technical Briefs
, Vol. 34. pp. 2–6.
Buyssens, P., M. Daisy, D. Tschumperlé, and O. Lézoray, 2015b. Exemplar-
based inpainting: Technical review and new heuristics for better
geometric reconstructions,
IEEE Transactions on Image Processing
.
Chambolle, A., and T. Pock, 2011. A first-order primal-dual algorithm
for convex problems with applications to imaging,
Journal of
Mathematical Imaging and Vision
, 40(1):120–145.
Criminisi, A., P. Pérez, and K. Toyama, 2004. Region filling and object
removal by exemplar-based image inpainting,
IEEE Transactions
on Image Processing
, 13(9):1200–1212.
Delon, J., A. Desolneux, J.-L. Lisani, and A.B. Petro, 2007. A
nonparametric approach for histogram segmentation,
IEEE
Transactions on Image Processing
, 16(1):253–261. Demantke, J.,
C. Mallet, N. David, and B. Vallet, 2011. Dimensionality based
scale selection in 3D LiDAR point clouds,
International Archives
of the Photogrammetry, Remote Sensing and Spatial Information
Sciences
, 38(5):97–102.
Doria, D., and R. Radke, 2012. Filling large holes in LiDAR data by
inpainting depth gradients.
Proceedings of the International
Conference on Pattern Recognition
, Vol. 1. pp. 65–72.
El-Halawany, S., A. Moussa, D. Lichti, and N. El-Sheimy, 2011.
Detection of road curb from mobile terrestrial laser scanner point
cloud,
International Archives of the Photogrammetry, Remote
Sensing and Spatial Information Sciences
, Vol. 38, pp. 29–31.
Ferstl, D., C. Reinbacher, R. Ranftl, M. Rüther, and H. Bischof,
2013. Image guided depth upsampling using anisotropic total
generalized variation,
Proceedings of the IEEE International
Conference on Computer Vision
, Vol. 1, pp. 993–1000.
Gehrung, J., M. Hebel, Arens, and U. Stilla, U., 2017. An
approach to extract moving objects from MLS data using a
volumetric background representation,
ISPRS Annals of the
Photogrammetry, Remote Sensing and Spatial Information
Sciences
, 4:107–114.
Geiger, A., P. Lenz, C. Stiller, and R. Urtasun, 2013. Vision meets
robotics: The KITTI dataset,
International Journal of Robotics
Research
, 32(11):1231–1237.
Goulette, F., F. Nashashibi, I. Abuhadrous, S. Ammoun, and C.
Laurgeau, 2006. An integrated onboard laser range sensing
system for on-the-way city and road modelling,
International
Archives of the Photogrammetry, Remote Sensing and Spatial
Information Sciences
s, 34 (A).
Hervieu, A., and B. Soheilian, 2013. Semi-automatic road/pavement
modeling using mobile laser scanning,
ISPRS Annals of the
Photogrammetry, Remote Sensing and Spatial Information
Sciences
, Vol. 2.
Hervieu, A., B. Soheilian, and M. Brédif, 2015. Road marking
extraction using a Model&Data- driven RJ-MCMC,
ISPRS
Annals of the Photogrammetry, Remote Sensing and Spatial
Information Sciences
2(3):47–48.
Huang, J., C.-H. Menq, 2001. Automatic data segmentation for
geometric feature extraction from unorganized 3D coordinate
points,
IEEE Transactions on Robotics and Automation
,
17:(3):268–279.
Landrieu, L., C. Mallet, and M. Weinmann, 2017. Comparison of
belief propagation and graph-cut approaches for contextual
classification of 3D LiDAR point cloud data,
Proceedings of the
IEEE International Geoscience and Remote Sensing Symposium
,
Vol. 1, pp. 2768–2771.
Lorenzi, L., F. Melgani, and G. Mercier, 2011. Inpainting strategies for
reconstruction of missing data in VHR images,
IEEE Geoscience
and Remote Sensing Letters
, 8 (5):914–918.
Muja, M., Lowe, D. G., 2014. Scalable nearest neighbor algorithms for
high dimensional data,
IEEE Transactions on Pattern Analysis
and Machine Intelligence
, 36 (11):2227–2240.
Paparoditis, N., J.-P. Papelard, B. Cannelle, A. Devaux, B. Soheilian,
N. David, and E. Houzay, 2012. Stereopolis II: A multi-
purpose and multi-sensor 3D mobile mapping system for
street visualisation and 3D metrology, Revue Française de
Photogrammétrie et de Télédétection, 200:69–79.
Papon, J., A. Abramov, M. Schoeler, and F. Worgotter, 2013. Voxel
cloud connectivity segmentationsupervoxels for point clouds,
Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition
, Vol. 1, pp. 2027–2034.
Park, S., X. Guo, H. Shin, and H. Qin, 2005. Shape and appearance repair
for incomplete point surfaces,
Proceedings of the IEEE International
Conference on Computer Vision
, Vol. 2. pp. 1260–1267.
Rabbani, T., F. Van Den Heuvel, and G. Vosselmann, 2006.
Segmentation of point clouds using smoothness constraint,
International Archives of the Photogrammetry, Remote Sensing
and Spatial Information Sciences
, 36(5):248–253.
Schnabel, R., R. Wahl, and R. Klein, 2007. RANSAC based out-of-core
point-cloud shape detection for city-modeling, Proceedings of
“Terrestrisches Laserscanning” 26:214–226.
Serna, A., and B. Marcotegui, 2013. Urban accessibility diagnosis from
mobile laser scanning data,
ISPRS Journal of Photogrammetry
and Remote Sensing
, 84:23–32.
Serna, A., and B. Marcotegui, 2014. Detection, segmentation
and classification of 3D urban objects using mathematical
morphology and supervised learning,
ISPRS Journal of
Photogrammetry and Remote Sensing
, 93:243–255.
Sharf, A., M. Alexa, and D. Cohen-Or, 2004. Context-based surface
completion,
ACM Transactions on Graphics
, 23(3):878–887.
Vallet, B., M. Brédif, A. Serna, B. Marcotegui, and N. Paparoditis,
N., 2015. TerraMobilita/IQmulus urban point cloud analysis
benchmark,
Computers and Graphics
, 49:126–133
Weickert, J., 1998.
Anisotropic Diffusion in Image Processing
, Vol.
1., Teubner Stuttgart. Weinmann, M., B. Jutzi, S. Hinz, and C.
Mallet, 2015. Semantic point cloud interpretation based on
optimal neighborhoods, relevant features and efficient classifiers,
ISPRS Journal of Photogrammetry and Remote Sensing
,
105:286–304.
Zhu, X., H. Zhao, Y. Liu, Y. Zhao, and H. Zha, 2010. Segmentation
and classification of range image from an intelligent vehicle in
urban environment,
Proceedings of the IEEE/RSJ International
Conference on Intelligent Robots and Systems
, Vol. 1. pp.
1457–1462.
PHOTOGRAMMETRIC ENGINEERING & REMOTE SENSING
June 2018
375